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Abstract

The adaptive processing of structured data is a long-standing research topic in machine

learning that investigates how to automatically learn a mapping from a structured in-

put to outputs of various nature. Recently, there has been an increasing interest in the

adaptive processing of graphs, which led to the development of different neural network-

based methodologies. In this thesis, we take a different route and develop a Bayesian

Deep Learning framework for the adaptive processing of graphs. The dissertation be-

gins with a review of the foundational principles over which most of the methods in

the field are built, and the discussion is complemented with a thorough study on graph

classification reproducibility issues. We then proceed to bridge the basic ideas of deep

learning for graphs with the Bayesian world, by building our deep architectures in an

incremental fashion. The theoretical framework allows us to consider graphs with both

discrete and continuous edge features, and it produces unsupervised embeddings rich

enough to reach the state of the art on a number of classification tasks. We later dis-

cover that our approach is also amenable to a Bayesian nonparametric extension, which

automatizes the choice of almost all models’ hyper-parameters. Real-world applications

are incorporated into the discussion to demonstrate the efficacy of deep learning for

graphs. The first one concerns the prediction of information-theoretic quantities useful

in molecular simulations, a problem tackled with supervised neural models for graphs.

After that, we exploit our Bayesian models to solve a malware-classification task in such

a way that the prediction is robust to intra-procedural code obfuscation techniques. We

conclude the dissertation with our attempt to blend the best of the neural and Bayesian

worlds together. The resulting hybrid model is able to predict multimodal distribu-

tions conditioned on input graphs, with the consequent ability to model stochasticity

and uncertainty better than most works in the literature. Overall, we aim to provide

a Bayesian perspective into the articulated research field of deep learning for graphs.
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Chapter 1

Introduction

Ahi quanto a dir qual era è cosa dura
esta selva selvaggia e aspra e forte
che nel pensier rinova la paura!

Tant’è amara che poco è più morte;
ma per trattar del ben ch’i’ vi trovai,
dirò de l’altre cose ch’i’ v’ho scorte.

Inferno - Canto I

1.1 Motivations

Abstraction and compositionality are the indispensable principles that we, as humans,

avail ourselves of in order to organize, compress, and comprehend the immense amount

of information perceived at every instant of our lives. In its broader sense, abstraction

is the process of simplifying some aspects of a complex system that are unnecessary to

our original purpose. It grants us the ability to find similar patterns and connections

between relatively distant ideas or, for instance, research fields. Compositionality, on the

other hand, is the tendency to design and understand systems as made of smaller but

entangled sub-components. That is to say, most dynamics of the real world are arguably

best modeled in relational terms, by considering entities that interact with each other:

bees organize themselves in a hierarchy of roles, each of which is crucial for the survival

of the colony; in classical physics, the movement of planets can be explained by their

mutual interactions through gravity; in chemistry, the disposition of atoms in space,

together with their chemical bonds, contribute to the characterization of the properties

of the molecule under consideration.

1
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In Computer Science, a data structure is a collection of values that adheres to the prin-

ciples of abstraction and compositionality and helps us to efficiently organize the infor-

mation. Depending on our needs different structures are feasible, such as sequences and

trees, but hereinafter we will be concerned with the notion of graphs. A graph is a data

structure composed of entities freely interacting with each other, so it should come as no

surprise that graphs are used in the most disparate problems, from chemistry, physics,

and mathematics to linguistics and network science.

Many a time, the combinatorial nature of such structured problems makes it hard to find

exact solutions with classical algorithms. In these circumstances, a viable option may

reside in machine learning techniques. The adaptive processing of Structured Data (SD)

is indeed a longstanding research topic of machine learning [1], whose goal is to learn

a mapping from the input structure to the desired output. Over the years, researchers

have developed a plethora of specialized methods to process sequences and trees [2–4]

relying on their structural regularities, but it was not until recently, after the advent of

deep learning, that considerable interest was devoted to the study of adaptive methodolo-

gies for graphs. Encouraged by the abrupt availability of graph data and new hardware

devices, as well as stimulated by the open research challenges ahead, researchers be-

gan exploring the many facets of what is now called Deep Learning for Graphs. This

auspicious research direction is characterized by a local and iterative processing of the

structured datum, which favors efficiency over combinatorial complexities and is func-

tional to the spreading of information through the graph’s entities. The approach also

enables automatic features’ extraction to solve a task with no human intervention.

Recent research on deep learning for graphs has been very prolific and intense, especially

as regards neural networks. The reasons are fairly straightforward: neural networks are

incredibly flexible, they can be implemented on hardware accelerators, and we know how

to propagate the error signal through very deep architectures. At the same time, such

productivity has come at the price of a certain forgetfulness, if not lack of appropri-

ate referencing, of pioneering and consolidated methodologies. Troubling trends on the

reproducibility of experiments and the robustness of evaluation protocols immediately

followed, generating confusion and ambiguities across the whole literature.

In addition, it could be argued that the Bayesian research direction for deep learning

on graphs, i.e., statistical methods modeling the probability distribution of graphs, has

been abundantly overlooked in spite of the advantages that the probabilistic approaches

usually bring to the table, e.g., expressing causal relationships in the data, incorporat-

ing prior information in the process, modeling uncertainty, and building unsupervised

embeddings from the posterior distribution. Perhaps, part of the general hesitation is

caused by the difficulty of defining deep and end-to-end trainable architectures.



3

1.2 Objectives

Starting from a unified, objective, and high-level overview of deep learning for graphs, the

main ambition of this thesis is to develop a fully probabilistic framework that embraces

the most distinctive traits of the field in a Bayesian context. The cross-pollination of

ideas between the neural and Bayesian worlds will naturally emerge throughout the

manuscript, for the sake of a mathematical formalization rooted in simplicity, efficiency,

and empirical efficacy. To move towards our goal, we will first have to understand and

review the basic principles that guide the development of most deep learning architectures

for graphs. Similarly, we shall attempt at mitigating the reproducibility issues that

would make our empirical analyses inconsistent with other works in the literature. With

solid ground below our feet, we will then devise deep, unsupervised, and probabilistic

models for graphs, called Deep Bayesian Graph Networks, that approximate the data

distribution through latent factors. As a by-product of the knowledge gained, we shall

additionally investigate how to deal with graph-related uncertainty by mixing neural

and probabilistic components, therefore concluding this dissertation with both worlds

working in close liaison.

1.3 Contributions

In view of the objectives outlined above, our main contributions can be ascribed to an

introductory review of the building blocks that are peculiar to deep learning for graphs,

accompanied by a rigorous and standardized evaluation that will allow the theoretical and

practical analysis of probabilistic and hybrid models. We complement the discussion with

some examples of applications highlighting the advantages of the adaptive processing of

structured data.

Unified Review [1] The analysis of a large body of literature, alongside the founda-

tional works of the field, revealed that there exist elemental principles that govern how

structured information is usually processed. We believed that the creation of a high-level

description of such basic concepts, rather than the systematic analysis of the recent ad-

vances, would have benefited both beginners and experts. In this sense, the discourse

adopts a top-down organization, in which details are presented only after the key notions

have been given. Additionally, we provide a uniform mathematical notation under which

different models are compared, to show how sometimes there are subtle but meaningful

technical differences in the definition of the main operations. Finally, we systematically
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organize a consistent number of works according to their major characteristics, e.g., how

they propagate information, the choice of the number of layers, and their nature.

Fair and Robust Empirical Re-evaluation [5] As anticipated, the large stream

of recent works has caused severe issues in reproducibility and standardization of the

experimental settings. To alleviate this, we propose a robust re-evaluation of various

models across several graph classification benchmarks. Starting from a report of the

specific issues of each paper under examination, we proceeded to run more than 47000

experiments to fairly compare all models under the same controlled environment. The

incorporation of a structure-agnostic baseline in the process led to the discovery that, in

some cases, said baseline performs better than most of these deep learning models for

graphs.

Basic Deep Probabilistic Framework for Graphs [6, 7] The first methodologi-

cal contribution of the thesis is the Contextual Graph Markov Model, our attempt at

building a fully probabilistic framework for deep learning on graphs. Borrowing ideas

from pioneering works, the construction of the deep architecture is incremental, with

each layer being trained after another, and the embeddings generation is completely un-

supervised. We provide a probabilistic implementation of the neighborhood aggregation

mechanisms that operate under the hood, as well as closed-form update equations that

guarantee convergence to a local minima of the likelihood landscape. We empirical eval-

uate our approach on classification benchmarks, and we discover that the unsupervised

construction of representations for the graph and its individual entities is surprisingly

rich, with subsequent classification performances that are quite close to the state of the

art. Furthermore, we analyze the behavior of the model across different layers, showing

that depth is of paramount importance to achieve a better generalization.

Architectural Extension of the Framework [8] The Contextual Graph Markov

Model can deal with discrete edge information, but as soon as we have more articulated

edge features it becomes tricky how to incorporate them into the mathematical formu-

lation. Instead of resorting to hand-crafted discretization techniques, we choose to learn

a discretization mapping via an architectural extension of the model. In particular, an

additional Bayesian network captures the latent discrete factors responsible for the gen-

eration of edge features, and such factors are then incorporated into the original model

at the next layer of the architecture. We empirically show that this mechanism is able

not only to improve performances over basic edge discretization techniques, but it also

boosts classification accuracy whenever edge features are not available.
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Bridging Graph Learning and Bayesian Nonparametrics The automatic selec-

tion of hyper-parameters is an intriguing research topic that finds elegant and mathemat-

ically sound solutions in the Bayesian nonparametric literature. These methods support

the selection of the “right” number of latent factors, or clusters, to use in a Bayesian

network. For this reason, we apply a Bayesian nonparametric treatment to each layer

of the Contextual Graph Markov Model, motivated by the need to automatize as much

as possible the choice of its most important hyper-parameter. We also develop a faster

but approximated version of the alghoritm that scales to larger graphs, without losing

predictive accuracy on the empirical classification tasks considered. Our method, born

from the cross-fertilization of ideas belonging to relatively distant fields, reduces by more

than 90% the size of the unsupervised graph embeddings, thus saving a great amount of

computational resources for the supervised classifier built on top of said embeddings.

Hybrid Approach to Uncertainty Modeling [9] The neural and probabilistic tech-

niques for graph learning undoubtedly have complementary advantages, namely the flex-

ibility of neural networks and the ability of Bayesian networks to naturally handle un-

certainty via probability distributions. We realized that some problems, for instance the

prediction of stochastic epidemic outcomes in a social network, could not be handled by

the current models in the literature. For this reason, we developed the Graph Mixture

Density Network, a fairly extensible framework to output multimodal distributions con-

ditioned on input graphs. We provide evidence that previous deep learning approaches

for graphs produce unsatisfactory results in the aforementioned contexts, whereas our

proposal can express its uncertainty about the plausible continuous value(s) to predict,

adding a degree of trustworthiness to the process.

Applications [10, 11] Throughout the manuscript, we take advantage of two practical

real-world problems to support our claims about the importance of the methodologies

discussed. We will present an application of deep learning for graphs to the field of

molecular biosciences, where the goal is to approximate the prediction of a molecule’s

information-theoretic quantity in a fraction of the time required by the original algo-

rithm. If successful, the learned model would enable a quasi-exhaustive exploration of

the output space, due to the combinatorial nature of the problem.

The other application concerns malware classification of software that is subject of obfus-

cation techniques, in particular those that do not change the topology of the associated

“call graph”. We will show that our probabilistic models are able to perform very well

on a classification task where a structure-agnostic baseline dramatically fails, and such

models are also robust to those software obfuscations.
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1.4 Thesis’ Outline

The thesis is organized into 5 more chapters.

In Chapter 2, we first review the basic definitions of probability, Bayesian learning, and

the models we will take inspiration throughout the rest of this work. Then, we will

talk about the formal definition of graphs, thus initiating the reader to the most used

mathematical notation. Finally, we will shortly summarized related approaches for the

adaptive processing of graphs that do not directly belong to deep learning.

In Chapter 3, we introduce the basic principles of machine learning for graphs, regardless

of the nature of the models, let them be neural, probabilistic, or hybrid. This broad

overview is integrated by an empirical fair comparison of models under the same graph

classification settings, in the attempt to partially take back control of the situation,

made unstable by the recent wave of (re-)discovery. We conclude the chapter with an

application from the field of molecular biosciences.

In Chapter 4, we present the main methodological contributions of this thesis, which fall

under the name of Deep Bayesian Graph Networks. The exposition is organized in such a

way that new techniques can be seen as extensions of previous ones, and many parallelism

are made with the basic notions of Chapter 3. For each of the models presented, we will

show variegated empirical analyses in support of the benchmark results. At the end of

the chapter, we apply the developed models to a real-world malware classification task.

In Chapter 5, we take the best of the neural and probabilistic worlds and design a hy-

brid model, called Graph Mixture Density Network, to output multimodal distributions

conditioned on arbitrary input graphs. The empirical evaluation on synthetic random

graphs and real-world chemical tasks is meant to show that, for some problems, the

“standard” approach to deep learning for graphs fails at producing the correct output.

In Chapter 6, we add summarizing thoughts to our dissertation, discussing open problems

and future research directions.
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1.5 Origin of the Chapters

Most of the results dispensed in this thesis have already been presented at conferences

and/or published at journals. The list below is the outcome of hard but much pleasant

work with a number of co-authors, who gave us the opportunity to collaborate at the

cross-road of different research fields.

Chapter 3

• Sections 3.1 to 3.2:

Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle intro-

duction to deep learning for graphs. Neural Networks, 129:203–221, 9 2020

• Section 3.3:

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair com-

parison of graph neural networks for graph classification. In 8th International

Conference on Learning Representations (ICLR), 2020

• Section 3.4:

Federico Errica, Marco Giulini, Davide Bacciu, Roberto Menichetti, Alessio Micheli,

and Raffaello Potestio. A deep graph network–enhanced sampling approach to ef-

ficiently explore the space of reduced representations of proteins. Frontiers in

Molecular Biosciences, 8:136–150, 2021

Chapter 4

• Section 4.1:

Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual Graph Markov

Model: A deep and generative approach to graph processing. In Proceedings of

the 35th International Conference on Machine Learning (ICML), volume 80, pages

294–303, 2018

Davide Bacciu, Federico Errica, and Alessio Micheli. Probabilistic learning on

graphs via contextual architectures. Journal of Machine Learning Research, 21

(134):1–39, 2020
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• Section 4.2:

Federico Errica Daniele Atzeni, Davide Bacciu and Alessio Micheli. Modeling edge

features with deep bayesian graph networks. In Proceedings of the International

Joint Conference on Neural Networks (IJCNN), pages 1–8, 2021

• Section 4.3 reports unpublished work, currently under review.

• Section 4.4:

Federico Errica, Giacomo Iadarola, Fabio Martinelli, Francesco Mercaldo, and Alessio

Micheli. Robust malware classification via deep graph networks on call graph

topologies. In Proceedings of the 29th European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning (ESANN), 2021

Chapter 5

• All Sections:

Federico Errica, Davide Bacciu, and Alessio Micheli. Graph mixture density net-

works. In Proceedings of the 38th International Conference on Machine Learning

(ICML), pages 3025–3035, 2021



Chapter 2

Preliminaries

E poi che la sua mano a la mia puose
con lieto volto, ond’io mi confortai,
mi mise dentro a le segrete cose.

Inferno - Canto III

In this chapter, we shall delineate basic definitions and techniques that will be used

throughout the rest of the manuscript. In doing so, it is assumed that the reader is

familiar with linear algebra and the fundamental machine learning concepts such as su-

pervised and unsupervised learning, multi-layer perceptrons, hidden units, and activation

functions, to name a few. We shall begin with a probability refresher and an introduc-

tion to some probabilistic modeling techniques. Special attention is devoted to mixture

models, as the probabilistic models developed in this thesis inherit many of their char-

acteristics. Then, we move to more advanced topics, such as ensity networks for flat

data, which borrow ideas from both neural and probabilistic worlds, and Bayesian non-

parametric mixture models, where the model’s complexity grows with the data.

We shall continue with a much needed discourse about the multifaceted nature of graphs,

introducing standard definitions and mentioning the challenges that machine learning

models have to face when handling this kind of structured data: these include the pres-

ence of cycles and the absence of a known ordering of the graph entities. Also, we describe

particular instances of graphs with a more rigid structure, for which learning models are

known and well-studied. Then, we discuss random graphs and the process to generate

them: we will necessitate synthetic datasets to carry out some of our experiments. To

conclude the chapter, we provide a brief summary of different research directions that

are complementary to the topics presented in this manuscript.

9
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2.1 Probabilistic modeling

We now review the principles of probability theory and some probabilistic modeling

techniques that are especially relevant for this thesis. The reader can refer to [12, 13] for

a complete treatment of these topics.

2.1.1 Probability Refresher

2.1.1.1 Basic Definitions

Probability theory provides us with the mathematical tools to rigorously formalize our

intuition of uncertainty and randomness [14]. To this aim, we first introduce the set of

all possible outcomes of an experiment with the symbol Ω (the sample space) and the

set of events of interest that may occur as A ⊆P(Ω), where P(·) denotes the powerset
operator; in particular, we require A to be a σ-algebra (or σ-field).

Definition 2.1 (σ-algebra). Let Ω be the set of possible outcomes and consider the

set of events A ⊆P(Ω). Then, A is a σ-algebra if the following holds:

1. ∅ ∈ A (accounting for the impossible event)

2. ∀A ∈ A =⇒ (Ω/A) ∈ A (closure under complement)

3. ∀{An}n∈N ⊆ A =⇒ ⋃
i∈NAi ∈ A (closure under countable union).

For instance, if we wanted to toss a coin, we would have a sample space Ω = {head,tail}
and A = P(Ω) = {{∅}, {head}, {tail}, {head, tail}}. Instead, if we had considered an

experiment made of two coin tosses, a single outcome could have been ω = {head, head} ∈
Ω.

In order to assign a number to a subset of events, the reason for which will become clear

in a moment, we need the notion of a measure over sets.

Definition 2.2 (Measure). Let A be a σ-algebra defined over Ω. A function f :

A → [0,+∞] is a measure on (Ω,A ) whenever:

1. ∀A ∈ A =⇒ f(A) ≥ 0 (non-negativity)

2. f(∅) = 0 (null empty set)

3. For all countable collections {An}n∈N ∈ A of disjoint sets it holds f(
⋃
i∈NAi) =∑

i∈N f(Ai) (σ-additivity).
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Therefore, a measure is a function that takes a set of elementary outcomes and outputs a

real number. Intuitively, this number may be regarded as the “size” of that set. Moreover,

the pair (Ω,A ) is called a measurable (or Borel) space. At this point, we explit these

concepts to define what a probability is.

Definition 2.3 (Probability). A probability is a measure P on (Ω,A ) where P (Ω) = 1.

Moreover, the tuple (Ω,A , P ) is called a probability space.

Continuing with the coin flip example, we can imagine a fair coin toss experiment where

the probabilities are: P ({∅}) = 0, P ({head}) = 1
2 , P ({tail}) = 1

2 , and P ({head,tail}) =

1.

Throughout the following sections and chapters, we will frequently encounter the no-

tion of random variable. Informally, a random variable is a variable whose values are

associated with a probability of occurrence.

Definition 2.4 (Random Variable). Given a probability space (Ω,A , P ), a random

variable is a measurable function X : Ω→ E s.t. {ω ∈ Ω | X(ω) ∈ E} ∈ A .

A random variable X can be discrete or continuous, depending on the nature of

its image E. To model the coin toss experiment, we can construct a discrete random

variable X such that E = {0, 1}, X(head) = 0, X(tail) = 1, and use the notation

P (X = head) = 1
2 and P (X = tail) = 1

2 to convey the same information as above. In

general, different outcomes may be assigned the same discrete value in E. For example,

if we toss a six-face dice two times and compute the sum of the numbers on the faces,

we can have 36 possible outcomes (the size of the sample space) but only 11 different

results (the size of the discrete set E).

Closely related to the concept of random variable is the notion of stochastic (or random)

process. A stochastic process allows to mathematically model the behaviour of complex

systems by considering families of random variables indexed by an appropriate set.

Definition 2.5 (Stochastic Process). Given a probability space (Ω,A , P ) and a set

T , a stochastic process refers to a family of random variables {Xt}t∈T . The values that

each random variable Xt can take are called states.

Any random variable is completely characterised by its Cumulative Distribution Function

(or probability law), which describes the probability that the value assumed by the

random variable is smaller than a given parameter.

Definition 2.6 (Cumulative Distribution Function (c.d.f.)). The cumulative distri-

bution function F of a random variable X is defined as F (X ≤ x) = P ({ω ∈ Ω | X(ω) ≤
x}), which is abbreviated as P (X ≤ x).
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For discrete random variables, we can also consider the tabular probability mass func-

tion (p.m.f.) pX(x) = P (X = x), whereas in the case of continuous random variables

we define the probability density function (p.d.f.) as fX(x) = d
dxFX(x). When clear

from the context, we shall use the notation P (X = x) (or P (x) for short) in place of

pX(x) or fX(x). Also, the support of a probability distribution is, the set of values for

which it returns a non-zero probability of occurrence.

Many’s the time we are interested in the probability of more than one event occur-

ring. We formalize this case with a set of random variables, each capturing the oc-

currence of a specific event. Accordingly, we call the joint probability distribu-

tion P (X1 = x1, X2 = x2, . . . , Xn = xn) the multivariate distribution that repre-

sents this particular stochastic process. In case a set of n random variables is said

to be mutually independent, the joint probability decomposes into the product of

the single terms, i.e.,
∏n
i=1 P (Xi = xi). This is because knowing about a given Xi

does not change our uncertainty about another random variable and viceversa. More-

over, when a set of random variables is mutually independent and each variable has

the same probability distribution, the variables are said to be independently and

identically distributed (i.i.d.). On the contrary, when the realization of an event

Y = y has an effect on the occurrence of other random variables, we talk about con-

ditional probabilities, denoted by P (X1 = x1, X2 = x2, . . . , Xn = xn | Y = y). Like

mutual independence, random variables are conditionally independent if it holds

P (X1 = x1, X2 = x2, . . . , Xn = xn | Y = y) =
∏n
i=1 P (Xi = xi|Y = y).

We are now ready to define the crucial rules that will be extensively used in the following.

Definition 2.7 (Sum Rule). Given a random variable X, the sum of probabilities over

all its values must sum to 1, i.e.,
∑

x P (X = x) = 1.

Definition 2.8 (Product Rule, a.k.a. Chain Rule). The joint distribution of n vari-

ables can always be rewritten as

P (X1 = x1, X2 = x2, . . . , Xn = xn) =

n∏
i=1

P (Xi = xi|
i−1⋂
j=1

Xj = xj).

Definition 2.9 (Marginalization). Combining the sum and product rules, and given

two random variables X and Y w.l.o.g., we can obtain the marginal probabilities of X

and Y as follows:

P (X = x) =
∑
y

P (X = x, Y = y)

P (Y = y) =
∑
x

P (Y = y,X = x)
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Oftentimes, we are also interested in computing the average value that X assumes, which

is called the expected value of X.

Definition 2.10 (Expected Value). Given a random variable X defined over a prob-

ability space (Ω,A , P ), the expected value of X is defined as

E[X] =

∫
ω∈Ω

X(ω)dP (ω),

where the Lebesgue integral is taken with respect to the measure P . For a discrete

random variable X with a finite number of attainable states and a known p.m.f., the

above equation simplifies to:

E[X] =
∑
x

xP (X = x).

Instead, for continuous random variables whose distribution P has a p.d.f., we can write

E[X] =

∫
R
xfX(x)dx.

In the remainder of this thesis, whenever we want to make explicit the distribution over

which we are computing the expectation of a certain variable, we will use the notation

Ex∼P [X]. In other words, we compute the expectation with respect to the values of x

sampled from the distribution P .

Finally, we introduce the notion of (discrete-time) Markov Chain to later discuss about

inference algorithms.

Definition 2.11 (Markov Chain). Let (Ω,A , P ) be a probability space, and consider

a stochastic process {Xt}t∈T where T is a totally ordered set. Then, {Xt}t∈T is a Markov

Chain whenever, for all sequences t0 < · · · < tn < tn+1 and for all states x0, . . . , xn, xn+1

the 1-st order Markov property holds:

P (Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = P (Xn+1 = xn+1 | Xn = xn).

We can easily generalize this definition to the k-th order Markov property

P (xn+1 | Xn = xn, . . . , X0 = x0) = P (Xn+1 = xn+1 | Xn = xn, . . . , Xn−k = xn−k),

giving rise to a higher-order Markov Chain.

When a process satisfies the Markov property, we say it is Markovian.
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2.1.1.2 Useful Distributions

As most of this work will be devoted to the development of deep and probabilistic models

for graphs, it is useful to briefly introduce the distributions that model discrete and

continuous data features.

Categorical Distribution. The categorical distribution is a discrete probability dis-

tribution working on a finite set of values of size C. It is often used by discrete random

variables that model C different possible outcomes, and it can conveniently be repre-

sented as a real vector of size C whose entries sum to 1. The parameters of the distri-

butions are given by the C different probabilities pi that constitute said vector. Simply

put, the p.m.f. of this distribution writes

p(X = i) = pi ∀i ∈ {1, . . . , C}.

Figure 2.1 depicts the p.m.f. and c.d.f. of a categorical distribution.
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Figure 2.1: We present a possible realization of a categorical distribution through its
probability mass function (left) and cumulative distribution function (right). Empty

dots symbolize non-smooth jumps to the next probability value.

Gaussian Distribution. The Gaussian distribution is a continuous probability dis-

tribution whose support is R. For a single random variable (univariate case), the

parameters of the distribution are just the mean value µ and the variance σ2, and the

probability density function is defined as

P (x | µ, σ2) =
1

σ
√

2π
e−

1
2

(x−µ
σ

)2 .

Generalizing the distribution to n random variables (multivariate case), the parameters

that define the distribution are a vector of n means µ and an n×n covariance matrix Σ.
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The p.m.f. of a multivariate distribution then becomes a function that takes an input

x ∈ Rn and returns a probability score:

P (x | µ,Σ) =
1√

(2π)ndet(Σ)
e−

1
2

(x−µ)TΣ−1(x−µ),

where det(·) is the determinant of a matrix. A multivariate Gaussian distribution is

said to be isotropic when the covariance matrix is diagonal, meaning the random vari-

ables under consideration are independent. In this case, the total number of parameters

becomes 2n rather than n + n2. Figure 2.2 visualizes instances of the univariate and

bivariate Gaussian distributions.
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Figure 2.2: We depict the probability density function (left) and cumulative distri-
bution function (right) of a univariate Gaussian distribution with mean 0 and vari-
ance 1. In addition, we plot the p.d.f. of a bivariate Gaussian with µ = [0, 1] and

Σ =

(
1 −1
−1 2

)
.

Binomial Distribution. The binomial distribution is another discrete probability dis-

tribution that accounts for the number of successes in a sequence of n experiments, each
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of which has a probability p of success and 1−p of failure. Its support is the set {0, . . . , n}
and the p.m.f. is computed as

P (x | n, p) =

(
n

x

)
px(1− p)n−x

where
(
n

x

)
=

n!

k!(n− k)!
.

Usually, the single experiment is called a Bernoulli trial, whereas the entire sequence of

outcomes is a Bernoulli process. The reference to Bernoulli comes from the fact that,

when n = 1, the distribution simplifies to a Bernoulli distribution (not shown here). We

conclude by showing the p.m.f. and c.d.f. of different binomial distributions in Figure

2.3.
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Figure 2.3: We plot different binomial distributions (left) and their c.d.f. (right) for
different choices of n and p.

Dirichlet Distribution. The Dirichlet distribution is a multivariate continuous distri-

bution parametrized by a fixed vector α of C real values called concentration parameters.

It can be seen as a distribution over distributions, because the sampling process outputs

a vector p, belonging to the standard C−1 simplex, which might be used to parametrize

a categorical distribution. The p.d.f. of the Dirichlet distribution D(α) is defined as

P (x|α) =
1

B(α)

C∏
i=1

xαi−1
i

where B(α) =

∏C
i=1 Γ(αi)

Γ(
∑C

i=1 αi)
,Γ(αi) = (αi − 1)!.

The Dirichlet distribution is particularly important in Bayesian statistics, being a con-

jugate distribution for discrete distributions such as the categorical. If a distribution

P is the conjugate of a distribution Q, it means that multiplying the p.d.f. of P and

Q will result in a distribution whose p.d.f. belongs to the same family of distributions

as P . This greatly simplifies the math and provides closed-form solutions in Bayesian
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learning, where the Dirichlet distribution is used to embed prior knowledge in the

learning framework. Finally, we depict two examples of Dirichlet distributions in Figure

2.4.
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Figure 2.4: Two Dirichlet distributions with α = [1, 1, 3] (left) and α = [3, 3, 3]
(right). Each side of the triangles denotes a different input component xi ∈ [0, 1].

Normal-Gamma Distribution. The last distribution we introduce is the Normal-

Gamma distribution, a continuous probability distribution that is conjugate of the uni-

variate Gaussian distribution. It has four parameters that act as prior knowledge: µ, the

empirical mean of the data; λ, which is inversely proportional to the prior variance of the

data (i.e., our belief about the robustness of the empirical mean); a and b, whose ratio

t = b
a controls the expected variance of the data captured by the univariate Gaussian.

Assuming a Gaussian random variable X and a Gamma random variable T , the p.d.f.

of a Normal-Gamma distribution is computed as

X ∼ N (µ, 1/(λT ))

T ∼ Gamma(a, b) whose p.d.f. is f(t | a, b) =
bata−1e−bt

Γ(a)
,Γ(a) = (a− 1)!

P (x, t|µ, λ, a, b) =
ba
√
λ

Γ(a)
√

2π
ta−

1
2 e−bt exp(−λt(x− µ)2

2
).

2.1.1.3 Learning as an Inference Problem

The goal of a generic machine learning task is to find a suitable choice of the model’s

parameters in order to optimize a pre-defined objective function. Likewise, in a prob-

abilistic setting where we need to capture the underlying distribution of the data, one

chooses a family of parametrized distributions assuming it is flexible enough to mimic

the true (unknown) data distribution. Therefore, the learning task can be framed as an

inference problem in which we adjust our beliefs about the parameters of the selected

family of distributions, e.g., a Gaussian or a Categorical. Before we outline the basics of
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the probabilistic learning framework adopted in this thesis, we shall introduce the Bayes’

Rule, which lies down the foundations of Bayesian learning.

Definition 2.12 (Bayes’ Rule). Given a discrete hypotheses space H and a set of

observations D (both of which can be modeled as random processes), for each hypothesis

hi ∈ H it holds

P (hi | D) =
P (D | hi)P (hi)

P (D)
=

P (D | hi)P (hi)∑
j P (D | hj)P (hj)

where P (h) is called the prior probability of h, P (D | h) is the likelihood that the

data has been generated by a certain hypothesis (with corresponding parameters θ), and

P (h | D) is the posterior probability that the hypothesis is correct given the data and out

prior beliefs about that hypothesis. Therefore, under the Bayes’ rule there is a trade-off

between our prior beliefs and the evidence coming from the data.

Given a set of random variables X = {X1, . . . , Xn} called observations that formalize

our knowledge about “the world”, the prediction for a new data point in a Bayesian

learning setting can be written as

P (X = x | D) =
∑
i

P (X = x | D, hi)P (hi | D) =
∑
i

P (X = x | hi)︸ ︷︷ ︸
hypothesis
prediction

P (hi | D)︸ ︷︷ ︸
posterior
weighting

,

where we used the product rule, marginalization, and assumed that X does not de-

pend on the data when hypothesis hi holds. Unfortunately, very often the space of the

hypotheses is infinite, and the exact computation of the posterior distribution of X be-

comes intractable. To address this practical issue, we can look for the single most likely

hypothesis given our data. This is called Maximum A Posteriori (MAP) inference:

hMAP = arg max
h∈H

P (h | D)
Bayes’
Rule= arg max

h∈H

P (D | h)P (h)

P (D)
= arg max

h∈H
P (D | h)P (h),

noting that we ignored the contribution of P (D) in the maximization because constant.

When assuming a uniform prior distribution over the choice of H, meaning P (h) is the

same everywhere, we obtain the Maximum Likelihood Estimation (MLE) objective:

hMLE = arg max
h∈H

P (D | h) = arg max
h∈H

L(θh | D).

Most of the techniques presented in this thesis will be based on the MLE objective,

whereas a restricted number of them will adopt MAP inference.
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2.1.1.4 Bayesian Networks

When modeling the world with a set of random variables, it is natural to make as-

sumptions about the relationships between those. One way to graphically express the

conditional dependencies between such variables is to use a Bayesian network. In this

graphical representation, an istance of which is illustrated in Figure 2.5, nodes represent

variables and edges convey the conditional independence information. We distinguish be-

tween observed variables that can always be inspected (i.e., the observations D contain

information about the values of these variables) and latent or hidden variables whose

values have to be inferred from the data. By definition, a Bayesian network allows us to

decompose the joint probability distribution of all variables following a straightforward

rule:

P (X1 . . . , Xn) =

n∏
i

P (Xi | pa(Xi)),

where the term pa(Xi) refers to the set of nodes that have an edge pointing to Xi (the

“parents” of Xi). Note that in a Bayesian network a variable cannot depend, directly or

indirectly, on itself. In turn, this simplifies the math and enables tractable solutions in

many cases.

Q

X1 X2 Xn. . .

Figure 2.5: A Bayesian network with latent (white) and observed (blue) variables.

To graphically represent a set of random variables in a compact way, we adopt the so-

called plate notation of Figure 2.6, where a plate (the box) symbolises replication of

conditional relations and encompassed variables for a number of times indicated by the

letter in the corner. Still, when clear from the context, we may drop the box and simply

use a subscript to denote the identity of the variables. With slight abuse of notation, we

also use white squares to represent hyper-parameters and blue squares for intermediate

deterministic computations.
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Qπ

Xi

Y

hY

n

Figure 2.6: Plate notation for the Bayesian network of Figure 2.5, with the addition
of prior hyper-parameters π and an intermediate node hY obtained deterministically

from the observed value of Y .

2.1.1.5 The Expectation-Maximization Algorithm

A widely adopted tool to train a probabilistic model with latent variables Z is the

Expectation-Maximization (EM) algorithm [15]. The key insight is that, rather than

maximizing the “incomplete” likelihood of the observed data P (X | θ), we focus on the

complete likelihood of the data P (X,Z | θ). It is a two-step iterative procedure that

maximizes the likelihood of the data, in which the parameters of the model at time step

t, namely θ(t), are updated (M-step) using the current estimate for the values of the

hidden variables Z (E-step). This resulting objective is simpler to maximize, since it

does not involve marginalization over all variables in Z. Formally, the EM algorithm

involves the following steps:

1. initialize the parameters θ(1) at random

2. (E-step) compute the expected value of the complete log-likelihood w.r.t. θ(t)

QEM (θ | θ(t)) = EZ|X,θ(t) [logP (X,Z | θ(t))]

3. (M-step) find the parameters that maximize the previous quantity

θ(t+1) = arg max
θ

QEM (θ | θ(t))

4. Repeat steps 2 and 3 until the complete log-likelihood stops increasing.

It can be shown that the quantity computed by the E-step is a lower-bound of the true

likelihood [15]. Therefore, the EM algorithm can converge monotonically to a local mini-

mum of the initial objective. In some cases, it is possible to compute the M-step solutions

in closed-form, this obtaining the maximum improvement over QEM . Whenever this is

not possible, common optimization algorithms may be used such as Stochastic Gradient
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Descent (SGD) [16]; as long as the value of the lower-bound increases, convergence is

still guaranteed. In this case, we talk aboutGeneralized Expectation Maximization

(GEM) [15]. Finally, note that EM can be easily extended to deal with MAP estimation,

by adding the contribution of the log-prior to the quantity E(θ | θ(t)) to maximize.

Knowledge about the values of hidden variables can be modeled via indicator random

variables. An indicator variable is a binary variable that is 1 when, e.g., another random

variable is in a certain state, and 0 otherwise. For instance, given a categorical variable

Q with C states, an indicator variable Zc may be described as follows:

Zc =

1, if Q = c with probability pc

0, otherwise with probability (1− pc)
where pc = P (Q = c).

As we will see, indicator variables will be invaluable to define the complete log-likelihood

of mixture models.

2.1.1.6 Gibbs Sampling

Whenever we shall encounter a joint probability distribution that is difficult to formalize

or sample from but the conditional probability of the individual variables is easier to com-

pute, we will depend on Markov Chain Monte Carlo (MCMC) algorithms. An MCMC

algorithm that is often used in Bayesian inference is Gibbs sampling [17], which works

by sampling the value of a single variable at a time before moving to the next one. By

iterating this process over and over, eventually the sampled values should approximate

the original joint distribution. Also, when some of the variables are observed, their values

are never updated. Given n random variablesX = {X1, . . . , Xn} from a joint probability

distribution P (X1 = x1, . . . , Xn = xn), we can obtain k samples fromX using the Gibbs

sampler:

1. Initialize the sample as X(0) = (x
(0)
1 , . . . , x

(0)
n )

2. When creating the i+1-th sample, for each component j (in order), update its value

by sampling from the known conditional probability using the following formula

x
(t+1)
j ∼ P (x

(t+1)
j |x(t+1)

1 , . . . , x
(t+1)
j−1 , x

(t)
j+1, . . . , x

(t)
n )

3. Repeat the previous step k times in order to obtain k distinct samples.

In general, we assume there is a burn-in period of variable length in which samples

do not accurately represent the joint distribution, so they are discarded. With Gibbs
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sampling, we are able to infer the posterior distribution of the model’s parameters con-

ditioned on the data. Still, to do so, we need to assume some family of distributions for

the different conditional probabilities; in this sense, a Bayesian network is an excellent

companion for Gibbs sampling, as its joint distribution is specified by means of a set of

conditional distributions.

2.1.2 Mixture Models

We shall now introduce the concept of mixture of distributions, which will be central to

this thesis thanks to its simplicity and flexibility. Let us assume we have a population of

samples, i.e., our data, in which there exist C sub-populations we would like to model.

In other words, we would like to associate each data point with one of the C sub-

populations; this process is usually referred to as clustering, and we can represent it

with the graphical model of Figure 2.7. In particular, we assume that there is a latent

Qi

Xi

|D|

Figure 2.7: The probabilistic graphical representation for a mixture model. The latent
variable Q assigns each data point to one of C different sub-populations (or clusters).

factor, represented by the categorical variable Q with C states, that is responsible for

the generation of the data points. Knowledge of the probability distributions of P (Q)

and P (X | Q) would allow us to generate new samples by first sampling the cluster c

from P (Q) and then drawing the data point x from P (X|Q = c). This is a mechanism

known as ancestral sampling.

Formally, we can model the distribution of our population by introducing the latent

variables via marginalization, assuming our samples are independent and identically

distributed:

L(θ | D) = P (D | θ) =

|D|∏
i=1

P (Xi = xi) =

|D|∏
i=1

C∑
j=1

P (Xi = xi | Qi = j,θ)P (Qi = j | θ),

where θ are the parameters of the mixture model that we have to learn. From now on,

we will refer to P (X | Q) as the emission distribution.
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Usually, we have no guarantees that the data will be organized in C different sub-

populations. At the same time, the larger C is the more flexible our approximation

will be. Hence, the parameter C, which controls the number of distributions to mix, has

to be therefore treated as an hyper-parameter.

To train a mixture model that maximizes the likelihood of our data, let us adopt the EM

framework and define the complete log-likelihood of the data. The usual way to do this

is to first assume we know the assignment of each data point to its cluster. Therefore,

let us introduce the indicator variables Z = {Z11, . . . , Z|D|C} where a generic variable

Zij has value 1 when the data point i is assigned to cluster j. We can take advantage of

Z to write the complete log-likelihood

Lc(θ | Z,D) =

|D|∏
i=1

C∑
j=1

zijP (Xi = xi | Qi = j,θ)P (Qi = j | θ)

=

|D|∏
i=1

C∏
j=1

(
P (Xi = xi | Qi = j,θ)P (Qi = j | θ)

)zij .
It is possible to obtain the last identity by noting that zij nullifies the contributions of

other clusters. To compute the E-step, we now need to apply the logarithm to the above

quantity, obtaining

logLc(θ | Z,D) =

|D|∑
i=1

C∑
j=1

zij log
(
P (Xi = xi | Qi = j,θ)P (Qi = j | θ)

)
.

Assuming we have some parameters θ(t), the quantity to maximize at each EM iteration

can be computed as

QEM (θ | θ(t)) = EZ|D,θ(t) [logP (D,Z | θ(t))] =

=

|D|∑
i=1

C∑
j=1

EZ|X,θ(t) [zij | D,θ(t)] log
(
P (Xi = xi | Qi = j,θ)P (Qi = j | θ)

)
.

Depending on the nature of the data, the family of the emission distributions P (X | Q)

will be different. For instance, discrete data may require a categorical emission, whereas

continuous data could be modeled by a Gaussian distribution. In the former case, it is

possible to show that the optimal emission distribution is given by

P (t+1)(X = k|Q = j) =

∑
i δ(xi, k)E[zij | D,θ(t)]∑C

j′=1

∑
i δ(xi, j

′)E[zij | D,θ(t)]
,

with δ(·, ·) being the Kronecker delta function. In practice, the above term amounts to

compute the fraction of points belonging to a certain cluster j that have label k, each
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weighted by the expected probability (according to our current parameters) that the

point will be in cluster j. This can be seen by noticing that the expected value of an

indicator variable is its associated probability.

On the other hand, for a Gaussian emission, the sufficient statistics for the j-th mixture

component are

µ
(t+1)
j =

∑
i xiE[zij | D,θ(t)]∑
i E[zij | D,θ(t)]

,

σ
(t+1)
j =

√√√√∑i E[zij | D,θ(t)](xi − µ(t)
j )2∑

i E[zij | D,θ(t)]
.

Finally, the prior probability P (Q) is updated as follows:

P (t+1)(Q = j) =

∑
i E[zij | D,θ(t)]∑

i

∑C
j′=1 E[zij′ | D,θ(t)]

.

For a complete treatment of the multivariate Gaussian case and more, the reader is

referred to [12, 13]. We conclude this part with an example of a three-component mix-

ture model fitting a population with three well-separated clusters. Figure 2.8 shows the

outcome of fitting a Gaussian mixture model via maximum likelihood estimation. We

observe how the three components adapt their mean (the diamond symbol) and covari-

ance matrices (the ellipses) to capture the original data distribution. These concepts will

be extended later on in this thesis to accommodate the complex domain of graphs.

Figure 2.8: Fitting a three-component bivariate Gaussian mixture model on the data
samples (crosses). We see that there are three different subpopulations in the data,
whose distributions have been well-approximated by the components of the mixture

model. The digital readers can click on this figure to start an animation.
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2.1.3 Mixture Density Networks

In supervised machine learning tasks, we care about approximating the distribution of

a target y conditioned on an input x, i.e., P (y | x). As regards regression problems,

the usual underlying assumption is that the output y we observe might be noisy, and

we let the distribution of such noise be Gaussian. Under these conditions, it is possible

to show that the function that computes the expected conditional value of y given x,

i.e., Ex,y∼D[y | x], corresponds to the optimal solution of our regression problem [18].

This is intuitively represented by the left hand-side of Figure 2.9. Put differently, as

long as the conditional distribution of the output is unimodal, we can train function

approximators such as a Multi-Layer Perceptron (MLP) [19, 20] to solve the task.

y

x

E[y | x0]

x0

0.00 0.25 0.50 0.75
x

0.0

0.5

1.0

y

data

MLP output

Figure 2.9: We sketch an example of a common regression dataset (left) in which we
assume a unimodal Gaussian noise around each output value. Instead, on the right we
show an example of an inverse problem, where y can be multi-valued for each x and an
MLP fails at capturing the data distribution which cannot be expressed by means of a

function.

Now let us imagine that the unimodality assumption does not hold anymore. In particu-

lar, given an input vector x, there can be more than one plausible values for the output

y. This is true for the so-called inverse problems, such as robot inverse kinematics and

stochastic simulations, where the mapping can be multi-valued. As we show in the toy

example, adapted from [18], of Figure 2.9 (right), an MLP cannot express uncertainty

about the possible values of y given x, due to the fact that neural networks are function

approximators. Nonetheless, we could use the mixture models from the previous section

to capture the (possibly multimodal) distribution P (y | x) via maximum likelihood

estimation. The crucial difference with respect to the classical formalization of mixture

models is the supervised nature of the task. We call this kind of problems Conditional

Density Estimation (CDE) tasks.

Therefore, the idea behind the Mixture Density Network (MDN) model [18] is to com-

pute multimodal output distributions conditioned on arbitrary flat input data. Since a

fully probabilistic formulation with closed-form solutions is difficult in the general case,
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MDN minimizes the negative log-likelihood of the data using backpropagation. We take

advantage of the extended plate notation introduced before and represent the Mixture

Density Network as a graphical model in Figure 2.10.

Qi

Yi

|D|
Xi

zi

Figure 2.10: We sketch the graphical model for a Mixture Density Network model.
Notice how the value of the variable Xi undergoes a deterministic transformation into

the hidden representation zi.

The first step of the process is to encode the input x into a hidden representation z.

This can be achieved, for instance, with any neural network of choice. Then, the first C

components of the hidden representation, namely zQ are used to compute the conditional

mixing weights for the C output distributions:

P (Q = j|x) =
ez
Q
j∑C

j′ e
zQ
j′
.

The other components of the z vector are used to compute the sufficient statistics of the C

output distributions. For a continuous output y, this amounts to having 2C parameters in

z associated with the means (zµ) and standard deviations (zσ) of univariate Gaussians.

On a practical note, the variance can be kept stricly positive by applying an exponential

transformation to the related components of z, whereas under/overflow numerical errors

can be mitigated with the “exp-normalise trick”

P (Q = j|x) =
ez
Q
j −b∑C

j′ e
zQ
j′−b

, b = max
j′

zQj′ .

Similarly to mixture models, the objective to maximize is the log-likelihood of the i.i.d.

samples:

logP (y | x) =

C∑
j

P (y | zµj , zσj )P (Q = j | x).
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To show that MDNs can solve the conditional density estimation problem for the toy

dataset of Figure 2.9, we train a three-component MDN on that dataset and visualize

both the values of the mixing weights P (Q | x) and those of the means zµi (Figure 2.11

- top). To observe whether the learned probability distribution captures the uncertainty

associated with each data point x, we also draw the probability contour plot of the model

as well as the mean value of the most likely conditional mode (Figure 2.11 - bottom);

the latter is selected by simple inspection of the mixing weights. We can see how a MDN

is able to solve the conditional density estimation problem, by providing a multimodal

distribution for each input x that can be appreciated by looking at the contour plot.

Figure 2.11: Fitting a three-component Mixture Density Network model on the toy
dataset of Figure 2.9, as well as the value for the mixing weights and Gaussian means
when the value of the scalar input x varies. The model can correctly capture the data
distribution by properly mixing the different Gaussians. The digital readers can click

on this figure to start an animation.
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2.1.4 Bayesian Nonparametric Mixture Models

One of the most recurrent questions that machine learning practitioners ask when using

mixture models is “how many components should we use?”. In this section, we introduce

techniques that automatically answer this question by exploiting the available data.

The field of Bayesian Nonparametric (BNP) methods deals with statistical models that

are, in fact, not parametric: the parameters of the model grow/shrink with the data,

and as such the model cannot be simply formalized by means of a fixed number of

parameters. Of course, this does not mean that we shall not make any assumption

about the underlying data distribution, as we still have hyper-parameters to tune and

distribution families to choose. The BNP field has been extensively studied [21–27] so,

in the interest of conciseness, we shall focus on the most relevant and intuitive concepts

that will be needed in the following. We will provide a high-level summary of a Dirichlet

Processes (DPs), its basic properties, and ways to represent DP-based models, before

discussing how we can perform inference in (Hierarchical) DP mixture models.

Let us start the discussion with the fundamental notion of exchangeability [25]. Infor-

mally, this notion specifies that the order in which a sequence of n identically distributed

observations {X1, . . . , Xn} appear does not influence the joint probability distribution

P (X1, . . . , Xn).

Definition 2.13 (Exchangeability). Let {X1, . . . , Xn} be a set of n random variables,

each defined on the same probability space, and let P be their joint distribution. These

variables are said to be exchangeable if, for any permutation σ of {1,. . . ,n} it holds

P (X1 = x1, . . . , Xn = xn) = P (X1 = xσ(1), . . . , Xn = xσ(n)).

Notice that this does not imply the observations are i.i.d.; on the contrary, i.i.d. vari-

ables are implicitly exchangeable. The notion of exchangeability is very important in

the Bayesian/non-Bayesian debate about modeling the parameters as random variables.

Because of De Finetti’s Theorem [28], under the exchangeability assumption there exists

a random variable θ such that P (X1, . . . , Xn) =
∫
P (θ)

∏n
i=1 P (Xi | θ)dθ. Therefore,

for exchangeable sequences, there exists a Bayesian model whose parameters are in fact

a random variable.

For the rest of the section, we shall follow [26] and assume a setting where observations

are exchangeable. Without going into needless technicalities, we define a Dirichlet

Process [29] as a distribution over other probability distributions. We parametrize a

DP using a base distribution G0, which is the expected value of the process, and a

concentration (or scaling) parameter α0 that controls how close DP realizations are to
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G0. Moreover, draws from DP(G0, α0) almost surely form a discrete distribution, even

when G0 is continuous.

Intuitively, to generate new data using a DP, one first draws a distribution G from the

DP and then uses that distribution to independently sample values for X1, X2, . . . . Nev-

ertheless, the harsh truth is that, in practice, one cannot directly sample a distribution

from a DP, as doing otherwise would require an infinite amount of information to repre-

sent the DP. Consequently, over the years researchers developed different ways to draw

samples from a DP [25]. Some of them, like the Chinese Restaurant Process (CRP) [30]

define the DP implicitly. Others describe a random draw, rather than the distribution,

in an explicit matter, e.g., the Stick-Breaking construction [22]. Finally, it is possible

to take the limit of a finite and parametric model to obtain a nonparametric one, an

instance of which is the finite mixture model that can be converted into a DP mixture

model [24]. In the following, we shall focus on the Stick-breaking representation for its

convenient implementation.

2.1.4.1 The Stick-Breaking Construction

We now present the Stick-Breaking construction, an explicit method to represent a DP.

To start, imagine having a stick of length 1 and splitting it every time we need to create

a new component in an infinite but discrete distribution (as in Figure 2.12). While each

component is assigned to a piece of the stick, whose length represents the prior probability

of that component, all the other infinitely many components are represented by the

unassigned portion of that stick, that is, the remaining portion of the black stick

in the figure. Practically speaking, this allows us to implement a DP mixture model on

π1
π2

π3

...

Figure 2.12: By recursively splitting a stick of length 1, we can obtain an infinite
number of prior probabilities πi.

a computer, since we could create a potentially infinite number of mixtures but only a

finite amount of them is stored in memory.

On a more formal note, the stick-breaking construction is based on sequences of indepen-

dent (but not identically distributed) random variables, namely {πk}k∈N and {θk}k∈N:

π′k | α0, G0 ∼ Beta(1, α0) θk | α0, G0 ∼ G0
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where Beta(a, b) = Γ(a)Γ(b)
Γ(a+b) is the Beta distribution. Defining a discrete probability

distribution G as

πk = π′k

k−1∏
l=1

(1− π′l) G =
∞∑
k=1

πkδθk

where δθk is the Dirac distribution with all probability mass concentrated on θk, it can

be shown [22] that G is distributed according to DP(α0, G0).

Because it holds
∑

k πk = 1, we can interpret π = {πk}k∈N as a discrete random variable

whose support is N. From now on, we shall identify the stick-breaking construction using

the standard terminology π = Stick(α0) [24].

2.1.4.2 Dirichlet Process Mixture Models

A Dirichlet Process mixture model is a BNP model in which a DP acts as prior in an

infinite mixture of distributions [24–27]. Assuming G has distribution DP(α0, G0), we

can formalize this model by writing

φi | G ∼ G
xi | φi ∼ F (φi),

where we use the abstraction F (φi) to denote which emission distribution to use for the

factor φi. For instance, φi might take as a value the parameters of a mixture model

component, whose emission distribution is represented as F (φi). The graphical model

is visually represented on the left hand-side of Figure 2.13. We can draw an alternative

formalization using the stick-breaking construction we just introduced. First of all, let

us assume that the factor φi of a data point xi can take values θk with probability

πk, according to the formulation of G in the stick-breaking construction. Then, we

introduce the random variable Qi, distributed as π, with support over the set N; the
value Qi is interpreted as the index of an infinite mixture component. Whenever Qi = qi,

the emission distribution for xi will be a θqi drawn from G0. The graphical model is

sketched in Figure 2.13 (right hand-side) and formally defined below:

π | α0 ∼ Stick(α0) qi | π ∼ π
θk | G0 ∼ G0 xi | qi, {θ}k∈N ∼ F (θqi).

Due to the sheer complexity of the BNP treatment, we will defer details about inference

(i.e., learning) to the following chapters. However, for the sake of clarity, let us conclude
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φi

G

|D|

Xi

α0

G0

Qi

π

|D|

Xi

α0 G0

∞
θk

Figure 2.13: The Dirichlet Process Mixture Model can be graphically represented in
more than one way. Here, we present its classical version (left) as well as the Stick-

Breaking variant (right).

this section by showing, in Figure 2.14, how a DP Gaussian mixture model learns the

“right” number of clusters while fitting the data of a toy problem.

Figure 2.14: We show the behaviour of a DP Gaussian mixture model (variational
inference implementation) that starts with 10 Gaussian components initialized using
the kmeans algorithm [31]. Iteration after iteration, the number of active components
decreases until it reaches 3, the same number of clusters that generated the data. In
other words, the model adapted its complexity to fit the underlying data distribution.

The digital readers can click on this figure to start an animation.

2.1.4.3 Hierarchical Dirichlet Process Mixture Models

In this thesis, we will work with a more complex version of a DP called Hierarchical

Dirichlet Process (HDP) [24]. In essence, an HDP adds a prior on the base distribution
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G0 using another DP, which is parametrized by a concentration parameter γ and a base

distribution H. The rationale behind the HDP is given by the problem setting: the data

points belong to J known and related groups, and each group has its own DP mixture

model [24]. In addition, we want to induce dependencies between these DP mixture

models by sharing the parameters of the emission distributions, i.e., the clusters are the

same. As before, there exists a stick-breaking version of the HDP that we depict in

Figure 2.15.

φji

Gj

nj

Xji

α0

H

Qji

πj

Xji

α0 H

∞
θk

J

G0γ

nj

J

βγ

Figure 2.15: We visualize the Hierarchical Dirichlet Process Mixture Model in both
its classical version (left) and Stick-Breaking alternative (right).

We now define the formulation of the stick-breaking construction for an HDP. Recall

that, for the i-th data point, the assignment to a group j is known; we will use the

subscript xji to reflect this notion.

β | γ ∼ Stick(γ)

πj | α0,β ∼ DP(α0,β) qji | πj ∼ πj
θk | H ∼ H xji | qji, {θ}k∈N ∼ F (θqji).
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However, it still remains unclear how one can sample πj from DP(α0,β). In [24], the

authors show that there exists a relationship between πj and β. In particular, it holds

π′jk ∼ Beta
(
α0βk, α0

(
1−

k∑
l=1

βl
))

πjk = π′jk

k−1∏
l=1

(1− π′jl).

All in all, these are the basic notions of the model upon which we shall build an infinite

mixture model for graphs.

Inference. To perform inference in BNP mixture models, one usually relies on Markov

Chain Monte Carlo (MCMC) algorithms [23, 25, 27]. This is possible whenever we can

efficiently integrate out the infinitely many “unused” latent components of the posterior

distribution, so that only the values for the finite number of active components are to be

inferred using known inference procedures. Recall that the idea of MCMC is to define

a Markov chain on the hidden variables, and by drawing samples from this chain we

eventually get a sample coming from the true posterior; the Gibbs sampling algorithm

we already saw belongs to the family of MCMC methods. Generally speaking, it is not

uncommon that MCMC algorithms require many draws before producing high-quality

samples, though the burn-in period heavily depends on the chosen algorithm.

Notice that, due to the random variables being exchangeable, Gibbs sampling is particu-

larly suitable for DP mixture models [27]. Indeed, each observation in the dataset can be

chosen as the last to use, since the order of appearance of the values does not matter in

the joint distribution. This is why we will rely on Gibbs sampling for the BNP method

developed in this thesis.

2.2 Graph Basics

In this section, we shall give a few but fundamental definitions, taken from graph theory

[32] and deep learning for graphs [1], which will be abundantly used throughout the

rest of this work. Generally speaking, a graph is a highly flexible data structure whose

entities of interest are connected to each other by some particular form of relationship.

The way connections are organized is often called the structure (or topology) of the

graph. It is this flexibility what makes it hard to learn from graphs, since we need to

take into account the topological variability of each input sample.

2.2.1 Fundamentals

Let us commence with a more precise definition of what a graph is.
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Definition 2.14 (Graph). A graph is a tuple g = (Vg, Eg,Xg,Ag) where Vg is the set

of vertices (or nodes with slight abuse of terminology [33]) identifying the entities of

interest, and Eg is the set of edges (or arcs) that couple pairs of adjacent vertices. We

will follow the notational convention that a vertex in a graph is identified by a natural

number with symbols u or v. Instead, Xg is a function that takes a vertex u ∈ Vg and

maps it to a vector of vertex features (or attributes) xu; similarly, Ag maps edges to

edge features auv. Note that the size of a graph g corresponds to the cardinality of

the vertex set, i.e., size(g) = |Vg|.

When vertex features are available, we require that each vertex u has its own feature

vector, and the same must hold for each edge. In jargon, when vertex and/or edge features

are used, the graph must be “uniformly labelled” [4]. For many practical problems, is

often the case that Xg : Vg → Rd, d ∈ N and Ag : Eg → Rd′ , d′ ∈ N. Nonetheless, due to

the nature of the models proposed in this thesis, most of the time we will consider discrete

or continuous values . In case a graph has no vertex feature information, it suffices to

consider an equivalent graph in which all vertices have the same dummy feature; clearly,

the same goes whenever edge features are missing.

To express the notion of “direction” in the connections, we can distinguish between

directed and undirected graphs.

Definition 2.15 (Directed/Undirected Graph). A graph g = (Vg, Eg,Xg,Ag) is said
to be directed when the edges are ordered, pairs of vertices i.e., Eg ⊆ {(u, v) | u, v ∈ Vg},
and the edges are oriented with tail u and head v. On the contrary, when the vertex

pairs are not ordered, i.e., Eg ⊆ {{u, v} | u, v ∈ Vg}, we talk about undirected graphs

and non-oriented edges. In general, an edge connecting u and v is said to be incident

to both vertices.

An undirected graph is useful when, e.g., representing molecules and mutual social in-

teractions. Instead, a directed graph can be used to model road networks or hyperlinks,

where the direction of the edge conveys additional information. Figure 2.16 depicts two

directed and undirected graphs, where the direction is graphically characterized by the

arrow symbol. To avoid confusion with the graphical notation of a random variable, we

will place the id of the vertex outside the respective circle; when clear from the context,

we may omit the vertex id in favor of a cleaner visualization.

Another fundamental concept is that of degree of a vertex; we first provide its definition

for directed graphs.

Definition 2.16 (Degree). Let g be a directed graph. The in-degree of a vertex

u ∈ Vg is defined as the number of ordered edges with head u, that is, indegree(u) =
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Figure 2.16: On the left, we present a simple example of a directed graph of size five,
whereas its undirected counterpart is shown on the right.

|{v | (v, u) ∈ Eg}|. In contrast, the out-degree of a vertex u is given by the number of

ordered edges with tail u, i.e., outdegree(u) = |{v | (u, v) ∈ Eg}|.

For most of the manuscript, we will implicitly work with the in-degree of a vertex u,

denoting it as deg(u) to simplify the notation. It follows that for undirected graphs there

is no distinction between in-degree and out-degree.

As an alternative to Eg, the structural information of a graph can be encoded by its

square adjacency matrix.

Definition 2.17 (Adjacency Matrix). The adjacency matrix of a graph g is a binary

square matrix A ∈ {0, 1}|Vg |×|Vg | where each entry Auv is 1 if an edge links u and v

together and 0 otherwise. In the case of undirected graphs, their adjacency matrix is

symmetric. Moreover, whenever edge features are scalars, we can encode this information

in a weighted adjacency matrix with Auv = auv, auv ∈ R.

The out-degree of vertex u can be extracted from the adjacency matrix by computing

the sum of the values on the u-th row Au,:, while the in-degree requires to sum over all

values on the u-th column A:,u. From the adjacency matrix, we can also construct the

corresponding Laplacian matrix:

Definition 2.18 (Symmetric Normalized Laplacian Matrix). Let g be a graph with

adjacency matrix A, and let D be the diagonal degree matrix with entries Duu = deg(u).

Then, the symmetric normalized Laplacian matrix of g is a square matrix defined as

Lsym = D−
1
2LD−

1
2 = I −D− 1

2AD−
1
2

where L = D −A is the unnormalized Laplacian matrix.
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The symmetric normalized Laplacian has a great deal of “good” properties that, especially

in the case of undirected graphs, come in handy when studying its properties and machine

learning models via spectral graph theory (see section 2.3).

We now introduce the concept of a cycle. Cycles are particularly insidious for deep

learning models that aim at automatically extracting features from graphs; the reason

will become clear in the next chapter.

Definition 2.19 (Cycle). Let us informally define a path as a sequence of distinct

edges that allow us to move from vertex u to v in the corresponding graph. A graph

cycle occurs when there exists a non-empty path from u to itself with no repeated edges.

If a graph contains no cycles, then it is called acyclic.

Instances of cyclic graphs have already been provided in Figure 2.16. Moreover, a graph

is called connected if there exists a path from each vertex to another. Strictly related

to cycles, another fundamental challenge when learning from graphs is the absence of a

consistent topological ordering of the vertices across the dataset.

Definition 2.20 (Topological Ordering). A topological ordering of a directed graph

g is a total order over its vertices such that, for every oriented edge (u, v) ∈ Eg, u comes

before v in such ordering.

Crucially, there exists a topological ordering of the directed graph if and only if it is

acyclic. In this case, we talk about Directed Acyclic Graphs (DAGs). In addition,

we say a graph is ordered if there exists a total order on the edges incident to each

vertex (unordered otherwise) [4]. An example of an ordered graph is the Directed

Ordered Acyclic Graph (DOAG) of Figure 2.17 (left). Similarly, a positional graph

is an ordered graph with bounded in-degree and out-degree for which there exist two

injective functions mapping edges that enter or leave a vertex to a distinctive positive

integer (non-positional otherwise). The main difference between ordered and positional

graphs is that, in the latter, some positions are allowed to be absent. We sketch a Directed

Positional Acyclic Graph (DPAG) on the right handside of Figure 2.17.

Remark. From now on, we will assume to work with the very general class of (un)directed,

(a)cyclic and (non-)positional graphs. To cope with the methodologies presented here,

whenever an undirected graph is provided as input it is simply transformed into its

directed counterpart. In particular, every edge {u, v} is converted into two distinct, op-

posite and oriented arcs (u, v) and (v, u); if an edge feature auv is present in the original

graph, this gets copied into both auv and avu.
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1 2
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2 1

Figure 2.17: A Directed Ordered Acyclic Graph is sketched on the left, whereas a
Directed Positional Acyclic Graph is on the right. For simplicity of exposition, we have

defined total orders for outgoing edges only.

In the field of deep learning for graphs, another important notion is that of a vertex

neighborhood. Intuitively, the neighborhood defines the local view of each vertex.

Definition 2.21 (Neighborhood). Given a directed graph g and a vertex u ∈ Vg, the
neighborhood of u is the set of vertices connected to u with an ordered edge:

Nu = {v ∈ Vg | (v, u) ∈ Eg}.

The neighborhood of u is closed if it always includes u and open otherwise. Whenever

the image of Ag is the finite and discrete set {c1, . . . , cn}, we shall extend our notation

to define the subset of those neighbors that are connected to u with an arc labeled as ck:

N ck
u = {v ∈ Nu | avu = ck}.

Figure 2.18 provides a simple visual depiction of a vertex neighborhood.

v1

v4

v3

v2

Nv1

Figure 2.18: The neighborhood of vertex v1 is here drawn as the set of vertices
belonging to the dashed green region.

Furthermore, let us formally define when two graphs are structurally equivalent, which

can be related to the expressive power of machine learning models for structured data.
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Definition 2.22 (Isomorphism). Two graphs g′ and g′′ are isomorphic (ignoring their

vertex and edge features) if there is a bijections f : Vg′ → Vg′′ such that two vertices u, v

are adjacent if and only if f(u), f(v) are adjacent.

We conclude this first part by informally introducing the reader to the notion of struc-

tural transductions, and we refer to [4] for a detailed mathematical treatment. A

transduction is, in general, a binary relation between two spaces U and Y, but we will

restrict ourselves to functions T : U → Y. Now assume that both U and Y are structured

spaces, e.g., they both represent the set of possible graphs, and define the skeleton of a

graph g, namely skel(g), as the graph obtained by discarding all vertex or edge labels.

We say that a transduction T (·) is IO-isomorph if it holds

skel(T (g)) = skel(g) ∀g ∈ U .

As we shall see in the next chapter, IO-isomorph transductions are central to most deep

learning architectures for graphs.

2.2.2 Instances of a Graph

Depending on the constraints posed on the connections of a graph, we obtain very specific

families of structures.

Definition 2.23 (Sequence). A sequence is a connected acyclic graph in which vertices

are adjacent if and only if they are consecutive in the topological ordering induced on

the graph.

Definition 2.24 (Tree). A tree is a connected acyclic graph in which any two vertices

are connected by exactly one path.

Because of their flexibility, trees have been successfully used in natural language pro-

cessing and chemistry to model, for example, syntactic dependencies in sentences and

molecules.

There is a special class of graphs that, due to specific patterns in the structure, is usually

impossible to be discriminated by current deep learning models for graphs as well as

isomorphism testing algorithms such as the 1-dim Weisfeiler-Lehman (WL) test [34].

Definition 2.25 (k-Regular Graph). A k-regular graph g is one in which deg(u) =

k ∀u ∈ Vg.

As a way of example, Figure 2.20 shows two 2-regular graphs that, however, are very

different in nature. Indeed, the former is a disconnected graph whereas the second is
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Figure 2.19: We sketch an directed sequence on the left and an undirected tree on
the right.

connected, but from the point of view of their degree distributions they look identical.

This is the reason why neither the 1-dim WL test nor most of the works on deep learning

for graphs can distinguish these two graphs as non-isomorphic.

Figure 2.20: Two instances of 2-regular graphs are presented. When ignoring vertex
or edge features, it is impossible to distinguish these two graphs by the 1-dim WL test

of graph isomorphism.

2.2.3 Random Graphs

A topic at the intersection of graph and probability theory is that of random graphs

[35]. This term generally refers to probability distributions defined over the discrete

mathematical representation of graphs. These distributions are usually defined by means

of a stochastic process over the creation of vertices and/or edges. Different random

graph distributions give rise to graphs with peculiar characteristics. In what follows, we

introduce two popular random graph distributions that are used to generate synthetic

datasets in this thesis.
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Definition 2.26 (Random Graph). A random graph is a graph G of size N , where

each pair of vertices is connected with probability p.

We use the capital letter G because we are dealing with random processes, and refer to

the family of random graphs with the term G(N, p).

In particular, the probability to obtain a particular realization g (without vertex/edge

attributes) of G with |Eg| = M is (for undirected connections):

P (G(N, p)) = pM (1− p)(N2 )−M .

The Erdős-Rényi Model

The Erdős-Rényi (ER) model [36, 37] is one of the pioneering works on random graphs.

The realization of an undirected graph g is obtained by considering all possible ordered

pairs (u, v), u, v ∈ Vg and sampling an edge between them with probability p. The

resulting distribution of the degree is binomial as follows:

P (deg(u) = k) =

(
N − 1

k

)
pk(1− p)n−1−k

and a visualization of possible realizations of an ER graph are shown in Figure 2.21 for

different values of p.

Figure 2.21: We generate two possible realizations of Erdős-Rényi graphs of size 10
with p = 0.3 (left) and p = 0.8 (right).

The Barabási-Albert Model

In the real world, it is not difficult to find examples of graphs that have very differ-

ent properties from the ER model. For example, social networks exhibit a scale-free
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property, i.e., the degree distribution follows the so-called power law

P (k | γ) = k−γ

parametrized by γ. In simple terms, this means that there are few vertices with high

degree (the “hubs”) and many vertices with low degree. The construction of scale-free

graphs follows the preferential attachment process, commonly known as “the rich

get richer”1, and the Barabási-Albert (BA) model [38] is one way to define a distribution

over scale-free graphs. The construction takes the size of the graph N and a number of

edges m to add at each step. It starts by instantiating n0 vertices, then it adds a new

vertex u and links it to m existing vertices following a sort of preferential attachment

criterion

puv =
deg(v)∑

v′≤v deg(v′)
.

It can be shown that the degree distribution of the BA model follows the power-law

distribution P (k) = k−3. We conclude by showing, in Figure 2.22, two examples of BA

graphs for varying values of the connectivity parameter m.

Figure 2.22: We generate two possible realizations of Barabási-Albert graphs of size
10 with m = 2 (left) and m = 5 (right).

2.3 What this Thesis is Not About

This thesis focuses on deep learning for graphs with an emphasis on Bayesian techniques,

but it would be inappropriate not to mention the different lines of research that address

graph-related problems in alternative and original ways. Below, the reader can find

a non-exhaustive list of some prominent approaches in the literature. Please bear in

mind that the references below are just a few representative examples of a much vaster

literature [1, 39–42].
1The “rich get richer” view can be found in Dirichlet Processes as well.
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Kernels

Kernel methods are one of the most long-standing and mature approaches that allow to

compare graphs [43–48]. Briefly, a kernel is a function k(·, ·) that computes a similarity

score for each pair of inputs in a given dataset D. The resulting |D| × |D| matrix K

is generally required to be positive-definite, even though this constraint is sometimes

overlooked without significant adverse effects. The “classical” drawback of most kernels

is that the function k has to be manually designed, and as such its choice may not be

suitable for all tasks. Moreover, computing the kernel matrix can become unfeasible for

very large datasets (with some exceptions [45]). Some of the ways in which one can

compute similarities between pairs of graphs is to take inspiration from the WL test of

graph isomorphism [45, 49] or to extract DAGs from each graph and then use tree-based

kernels to compare them [50, 51]. The matrix K, often called Gram matrix, can be

incorporated into Support Vector Machines (SVMs) [52] to address binary or multiclass

graph classification.

Alternative methods may not be directly formulated as kernels but have an interpretation

in terms of them. In particular, we mention a recent probabilistic approach [53] that is

somewhat related to graphlet (sub-graph) kernels [54] and was shown to be competitive

against both kernels and deep learning models.

Clearly, when the properties of interest are known, kernels prove to be more than ade-

quate to solve the task at hand. Whenever this is not the case, it might be preferable

to learn to extract features from a graph according to some unsupervised or supervised

criterion, without posing handcrafted restrictions on the kind of patterns to look for.

Statistical Relational Learning

Other classical approaches to deal with graph structures belong to the field of statistical

relational learning [55, 56]. This field combines probability theory, inductive logic, and

learning to create data-driven models that possess a strong inductive bias rooted in

logic rules. Examples to be ascribed to this field are Markov logic networks [57], which

combine Markov random fields [58] and first-order logic, and conditional random fields

[59] for classification of sequences. Differently from the methodologies described in this

thesis, statistical relational learning does not typically rely on deep architecture to solve

graph-related tasks, even though some hybrid approaches exist [60].
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Spectral Graph Theory

The objective of spectral graph theory is to mathematically characterize graphs through

the analysis of the adjacency and Laplacian matrices. This is another well-studied topic

that finds a diverse set of applications, from Laplacian smoothing [61] to graph semi-

supervised learning [62, 63] and spectral clustering [64]. We can also view the list of vertex

features as a graph signal to be processed with ad-hoc signal-processing techniques: the

Graph Fourier Transform [65] has allowed to extend the formal definition of convolution

over graph signals, and subsequent approaches [66] used approximations of spectral graph

convolutions to learn graph filters.

A limitation of learned spectral techniques is the lack of generalization to new graph in-

stances. In fact, everything depends on the eigen-decomposition of the specific Laplacian

matrix, whose eigenvector matrix Q is the orthonormal basis used to define the Graph

Fourier Transform on the graph signal f ∈ RVg :

F(f) = QT f

f = F−1(QT f) = QQT f ,

where we used the ortogonality of Q to obtain the inverse. Then, the convolution in the

graph domain between a filter θ and the graph signal can be written in a similar way to

the usual Fourier analysis [67, 68]:

(f ⊗ θ) = QWQT f

whereW = diag(QTθ) is the diagonal filter matrix (which can be learned [66]). The filter

matrix, however, will only work with graphs that are identical, so it will not generalize

to different graph instances. Also, computing the exact eigen-decomposition becomes

unfeasible for large graphs. All those issues motivated the study of approximate tech-

niques [69] using the truncated Chebyshev expansion [65]. Later on, it was proposed to

consider only the first term of said expansion [70], and the resulting approximation was

used as a layer for a deep architecture for graphs.

Random Walks

A random walk in a graph is a path starting from a vertex and exploring the surrounding

neighborhood in a stochastic way. Random walks are often used to characterize a wider

neighborhood of vertices: it is an attempt to acquire both local and non-local information

to create meaningful vertex representations [44, 71–73]. There are different ways in which

random walks can be constructed and used: frameworks like Node2Vec [74] explore the
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surroundings of a vertex in a way that depends on the chosen hyper-parameters. Indeed,

hyper-parameters determine whether to traverse the graph in depth or breadth search

style. The objective to maximize is the likelihood of a vertex given the information

extracted by the random walks. Similarly, methods like DeepWalk [75] model each

random walk as a sentence, still maximizing a likelihood objective inspired by skip-grams.

More recently, graph generation has been tackled with random walks [76], whereas a

connection between deep learning for graphs and random walks has been investigated in

[77].

Graph Generation

Graphs are discrete and combinatorial mathematical objects, and as such it is not obvious

how to exactly define distributions over them. We have seen that random graphs define

a process by which it is possible to generate skeletons of graphs, but now the question

becomes “is it possible to train a model to generate graphs?”. Additionally, we would

like to have our model creating graphs that are original and variable in size. Many

are the practical implications of such an approach, for instance developing new drugs

conditioned on certain properties that must hold true, or similarly for the science of

materials discovery.

Due to the nature of the input data, it is not easy to use gradient-based methods to ap-

proximate the underlying distribution P (g). Instead, one usually conditions the genera-

tive process on a set of latent representations, either for the entire graph or its individual

vertices. Most approaches can be therefore divided between graph-level and vertex-

level decoding. The former generates an adjacency matrix starting from a latent graph

representation [78–80], whereas the second connects vertices depending on the similar-

ity of their latent representations [81, 82]. Note that graph-level decoders are generally

sensitive to the ordering of the vertices because they assume a fixed ordering of the adja-

cency matrix, whereas node-level decoders do not suffer from this limitation. Among the

generative graph models that are fully differentiable, we mention auto-encoder based gen-

erators [79, 83–87] and generative-adversarial networks [88–91]. Finally, another family

of models generates graphs as a result of a sequence of actions, which showed interesting

generalization performances but is sensible to the vertex ordering [92–97].

Trustworthy AI for Complex Data

Being able to determine if a model complies with the trustworthy AI principles, such

as fairness, privacy, robustness, explainability, and transparency, remains an open and

valuable research question. Indeed, robustness to adversarial attacks, e.g., perturbations
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of the vertices or edges of topologically different graphs, guarantees that a model will

behave as expected when deployed [98–105]. Similarly, fairness principles in graph ap-

plications have been analyzed [106] to ensure that age/gender information about the

entities is properly used and does not correlate too much with the target vale. While

the probabilistic models presented in this thesis hold promise for what concerns inter-

pretability and explainability (due to the explicit formulation of the causal effects), we

leave such ideas for future research.

Theoretical Characterization of Models’ “Expressiveness”

There is a very active line of research devoted to the theoretical analysis of the discrim-

inative power of deep learning methods for graphs. Among them, we mention studies

on the effect of depth and width [107, 108], as well as enhancements to the main graph

convolution mechanism that will be introduced later [109, 110] and its theoretical charac-

terization in terms of communication capacity [111]. In addition, researchers have spent

much effort in deriving equivalence relations between the k-dimensional WL test of graph

isomorphism and specific deep learning architectures [49, 112, 113] that discriminate k-

regular graphs. Finally, others have built lower and upper bounds on the expressiveness

of specific classes of learning algorithms [114].



Chapter 3

Principles of Deep Graph Networks

Io non posso ritrar di tutti a pieno,
però che sì mi caccia il lungo tema,
che molte volte al fatto il dir vien meno.

Inferno - Canto IV

The goal of the chapter is to give a high-level overview of the field of machine learning

for graphs. Our main contribution is the standardization of the literature under a unified

framework that let us look at similarities, differences, and novelties through the same lens.

After some opening remarks on the main principles of contextual information processing,

we build the discussion around the core building blocks of the field, such as neighborhood

aggregation mechanisms, graph pooling, readout transductions and learning criteria.

Equipped with this general understanding of deep learning for graphs, we shall then

talk about scholarship issues in graph classification tasks. In fact, the rapid growth of

interest in the field came at the price of poor reliability of empirical procedures. We shall

discuss our effort in this direction, particularly how we carried out a fair, robust, and

reproducible evaluation to help researchers avoid empirical malpractices in the future.

To consolidate the theoretical notions, we will conclude the chapter with a real-world

application from the field of molecular biosciences. By training a deep learning model on

different protein realizations, we show that it is possible to efficiently predict the amount

of “information loss” between the all-atom system we would like to study and one of

its simpler but coarser representations. Overall, this “gentle” introduction creates fertile

ground for what will come afterwards, that is, Bayesian deep learning models for graphs.

46
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3.1 Contextual Processing of Information

To be able to put the recent burst of excitement about deep learning for graphs into

the right perspective, we first go on a historical tour to show that the core ideas have

already been there for more than twenty years. As a matter of fact, recent advancements

of the field have not come without a certain forgetfulness of the pioneering methods that,

however, shaped the field in its infant stages and are still relevant today.

We pick up from the transduction T introduced in the previous chapter. Generally

speaking, when solving a supervised task on structured data, we can decompose the

transduction into two phases. First, there is an IO-isomorphic transduction Tenc that

computes a vectorial encoding hv of each vertex v in the structure; ideally, such an en-

coding (called state or representation) should capture information about the vertex’s

surroundings, in order to differentiate it from other vertex states. Then, if we care about

individual entities’ prediction, a readout transduction Tout has to map each vertex state

to its corresponding output value yv. Instead, when the task requires a single prediction

yg for the whole structure, all vertex states have to be first aggregated into a single rep-

resentation hg using a readout formed by the composition of a global aggregation R with

an output transduction Tout. This rather high-level scheme is summarized in Figure 3.1,

and it serves as our entry point into the world of Structured-Data Learning (SDL).

Tenc

xv hv

Tout

R
hg

yv

Tout
yg

Figure 3.1: High-level visualization of most SDL approaches. Each vertex of the
input structure g is mapped to a state hv after which, depending on the nature of the
task, an IO-isomorphic output transduction Tout is applied or all vertex states are first

aggregated into a single state hg by a global aggregation function R.

Hereinafter, we will be primarily concerned with ways to define the encoding transduction

Tenc, as this estabilishes how vertex states are computed.1 Any SDL transduction relies

on three main properties listed below

• Causality: the encoding of an entity v depends only on itself and its descen-

dants in the structure. The causality assumption intuitively acts as an inductive
1A reader interested in the theoretical aspects of the global aggregation and readout functions can

refer to [109, 115–117] and the references therein.
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bias on the transduction by stating which dependencies between entities should be

considered relevant. While strictly related to the class of input structures, causal-

ity assumptions and topology are actually different concepts. For instance, in an

undirected sequence there are at least three straightforward causality assumptions

one can make about the direction of the dependencies, with consequently different

outcomes and machine learning architectures.

• Stationarity: the encoding of an entity v is the same regardless of v’s identity.

Practically speaking, stationarity is deeply intertwined with the notion of weight

sharing, as it defines how we can reuse the same encoding mechanism on every

entity. We can also distinguish between full stationarity, where we do not make

any assumption on the class of structures under consideration, and positional sta-

tionarity for DPAGs, in which we use different parameters for each position of the

vertex’s children to be considered [118].

• Adaptivity: the transduction is learned from the data. Whether the architecture

is end-to-end differentiable or it admits closed-form update equations via the EM

algorithm, the crux of the matter is that we want to avoid as much as possible any

form of preprocessing of the structure. This is strongly related to the notion of

representation learning [119, 120].

In the abundant and pioneering literature for sequence, tree and DAG learning [2–4,

115, 118, 121–125], the encoding transduction admits a recursive definition of the vertex

state space, respectively. This is possible because the causality assumptions on these

structures, mostly inspired by the available topological ordering, do not incur in infinite

loops that would generally make the definition of the vertex state unfeasible.

From now on, we shall use the term contextual processing when talking about compu-

tations whose output depends on the information encoded in the structure, i.e., according

to its topology and related causal assumptions. Also, the context of a vertex state hv
shall be the set of states that directly or indirectly contribute to determining hv.2

Let us make a concrete example to better understand the relation between causal as-

sumptions and contextual processing of information. Regardless of whether the acyclic

structure of Figure 3.2 is directed or undirected, we can make different causal assump-

tions using its topology. Here, we assume top-down (left) and bottom-up (right) causal

dependencies between vertex states. The state of vertex v, indicated by the orange dot-

ted circle, is recursively computed in terms of the states of the descendants. We use

dashed edges to denote the state dependencies (the target depends on the source), which

may differ from the original topological representation of the structure. Nested boxes
2Please refer to [107] for a formal characterization of the context of a vertex state.
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v

v

Figure 3.2: Example of different causal assumptions on the same tree structure.
Dashed arrows denote state dependencies rather than the actual topology, whereas
encapsulated boxes show how the context of vertex v increases as the recursive compu-

tation is unfolded.

aim to convey the amount of context involved at each recursive step in the definition

of hv. We observe how vertices can encode different kinds of contextual information,

i.e., the state of the parents up to the root or the entire subtree state rooted in v. The

choice of a particular causal assumption is clearly task-dependent, since it encodes our

bias about what kind of information vertex states should contain.

So far, we have considered acyclic structures, for which learning algorithms based on

backpropagation through time [126, 127] or structure [2, 122, 128, 129] exist and are

practical to implement. Notwithstanding their importance, the above algorithms are

generally unsuitable when it comes to learn vertex representations of a cyclic graph. In

addition, some of these algorithms even assume that the size or number of parents/chil-

dren are bounded by some value. On the other hand, we seek a practical methodology

that can seamlessly treat cyclic graphs.

3.2 Deep Learning for Graphs [1]

Having defined the challenges ahead of us, it is time to describe the solutions proposed

in the literature. Simply put, most works focus on the development of practical and

effective models that automatically extract features of interest from graphs of varying

topology while generalizing to unseen instances. This is why the field is often referred

to as Graph Representation Learning (GRL). In an attempt to disambiguate other

terms [130, 131], in this thesis we will adopt the uniforming terminology of Deep Graph

Networks (DGNs) [1]. Below, we discuss how most DGNs address the presence of cycles,

lack of a topological ordering, and variable topology in the dataset.
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3.2.1 Local Computation of Vertex States

Two are the common solutions adopted in the literature to abstract from graphs of

different topology, even though they are rarely stated explicitly. First of all, causality

assumptions are relaxed, because taking into account the descendants of a vertex v creates

issues when that vertex belongs to a cycle. In other words, pairs of vertex states are

assumed to be independent when conditioned on the states of their neighbors. Secondly,

due to the lack of a predefined total ordering of the neighboring vertices, in the most

general case one has to assume full stationarity of the encoding process. As a result, not

only do we apply the same learned function to all vertices, but we also need this function

to be flexible enough to accept a variable number of neighboring states in any possible

ordering. This is why permutation invariant functions are often employed in these

models: their output does not change upon reordering of the input elements. Examples

of such functions are the element-wise sum, mean, and product operators. Importantly,

there exist conditions [116, 117] under which it is possible to express any continuous

permutation invariant function Ψ : XM → R, with X being an uncountable set: if we

consider a finite number M of elements, then

Ψ(x1, . . . , xM ) = φ(
M∑
i=1

ψ(xi))

with φ and ψ being continuous functions that can be approximated by neural networks

[132]. For the rest of this work, we will use the Greek letter Ψ to denote a permutation

invariant function.

3.2.2 Breaking Cycles via Iterations

By now, the attentive reader may have noticed that the issue of mutual dependencies

induced by cycles has not been solved yet. To see this, just imagine that a vertex

is connected to itself via a self-loop. Clearly, we cannot compute its state using the

aforementioned local approach because one of the neighboring vertex states is the state

of the vertex itself. Therefore, other than being local, the processing of information in

DGNs has to be iterative: the state of a vertex is conditioned on neighboring states

computed “at some previous iteration”. If we already have some information on which

to condition the vertex states, we can effectively break cycles in the structure with a

simple iterative approximation.

Crucially, a local and iterative processing of information allows us to propagate con-

textual information across the graph. If we unfold the computation on the graph of

Figure 3.3, we can see how at iteration ` = 2 the state hu depends on the state of hv at
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` = 0 ` = 1 ` = 2

hv

hu

Nv

Nu

Figure 3.3: We show how the context of a vertex spreads in an undirected graph as
we iterate the local processing of information described above. Dashed arrows represent

the context flow as we unfold the computational graph.

` = 1. In turn, hv is obtained by applying a learned permutation invariant function to

the neighboring states of iteration ` = 0. Therefore, by repeated iteration, each vertex

increases its context according to the graph topology [107]. In what follows, we shall

refer to the state of vertex u at iteration ` with the symbol h`u. To bootstrap the overall

process, it is often the case that h0
u = xu.

A popular formalism to describe the above process is that of “message passing” [133–

137]. In particular, there are two operations associated with each vertex:

• message dispatching : compute a message for each vertex to be propagated to the

neighbors. The message may depend on the vertex state as well as edge information.

• state update: the state of each vertex is updated in parallel using the incoming

messages.

Likewise, we can also imagine traversing the graph in no particular order to update the

vertex states, and then iterate this traversal as many times as needed. This recalls the

idea of Convolutional Neural Networks for images3 [138], where at each layer a filter

passes over all pixels to compute new values based on the pixels’ surroundings and

multiple layers increase the receptive field (i.e., the context).

3.2.3 Three Styles of Context Propagation

In the above schemes, the notion of “iterative process” is sufficiently generic to encom-

pass different styles of context diffusion. Therefore, we partition DGNs into three main

families, namely recurrent, feedforward, and constructive architectures. We now

separately describe their characteristics.
3Images can be represented as graphs where vertices are organized in a grid and for which a “natural”

ordering exists.
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Recurrent architectures. Recurrent machine learning models for graphs treat the

encoding process as a dynamical system, but at the same time they rely on contractive

dynamics to ensure some convergence criterion can be met. The Graph Neural Network

(GNN) [130] and the Graph Echo State Network (GraphESN) were the first models

developed in this sense. On the one hand, GNN is a recurrent neural network that relies

on constraints in the (supervised) objective function to ensure convergence. On the other

hand, GraphESN brings the Reservoir Computing approach to the processing of graphs,

inheriting convergence from the contractivity property of the untrained pool of neurons.

That said, it is also possible to fix in advance the number of iterations, regardless of

whether convergence has been reached. This was the idea behind the Gated Graph

Neural Network (GG-NN) [139].

Recurrent architectures treat the single iteration ` of the encoding process as a “time step”

of the corresponding dynamical system, and they consist of a single layer of recurrent

units to be repeatedly applied. Nevertheless, there exist multi-layered versions of these

models such as the Fast and Deep Graph Neural Network (FDGNN) [140], which extends

GraphESN to efficiently construct multi-resolution views of the graph.

Feedforward architectures. From the perspective of feedforward models, iterations

are layers of a possibly deep architecture, where each layer has its own parameters to

be optimized. Stacking multiple layers is a way to compose the context learned in a

very flexible way, without being forced to impose contractive dynamics or use recurrent

units. The Neural Network for Graphs (NN4G) [107] was the first feedforward model

for graphs to be developed, defining what was later re-discovered as the “spatial graph

convolutional layer” [70, 141].

This family is the most known at both industrial and research levels, for its simplicity,

ease of implementation, and competitive performances on many different tasks [41]. At

the same time, it inherits the same gradient-related issues of deep neural networks, in

particular when trained in an end-to-end fashion [142, 143]. Differently from deep net-

works for flat data, though, here depth serves two purposes, i.e., automatically extracting

features and propagating contextual information across the graph. Nowadays, it is very

straightforward to build these models, thanks to the collective effort of researchers that

released easy-to-use libraries for quick development and experimentation [1, 144, 145].

Constructive architectures. A constructive model is a special case of a feedforward

model where training occurs one layer at a time. As a consequence, constructive models

do not necessarily suffer from oversmoothing of representations [143] or vanishing/explod-

ing gradient effects. When used with a supervised criterion, this methodology allows to
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automatically determine the number of layers needed by the task, i.e., the amount of

context to propagate, for example using Cascade Correlation [146].

One of the major characteristics of constructive models is that they approach the task in

a divide-et-impera fashion, where each layer contributes to the solution of a sub-problem

and subsequent layers try to better solve the task using the information extracted from

previous layers. Notably, once a layer is trained its weights are frozen, meaning they do

not change while training new layers. The NN4G belongs to the family of constructive

approaches, as well as theContextual Graph Markov Model (CGMM) [6] of Chapter

4.

(Deep Graph Networks)

(Deep Neural Graph Networks) (Deep Bayesian Graph Networks)

Recurrent Feedforward

Constructive

Constructive

DNGNs DBGNs
(Deep Generative Graph Networks)

DGGNs

DGNs

Node-level Graph-level
decoder decoder

Graph Mixture Density Networks
(Chapter 5)

Contextual Graph Markov
Model (CGMM)

(Chapter 4)

Extended CGMM
(Chapter 4)

Infinite CGMM
(Chapter 4)

Figure 3.4: A taxonomy of the various context propagation mechanisms, with the
addition of the specific models developed in this thesis.

Before we dive deep into the building blocks of Deep Graph Networks, we provide an il-

lustrative taxonomy summarizing what we said so far and highlighting where the models

developed in this thesis stand. The taxonomy, provided in Figure 3.4, is by no means ex-

haustive, but it encompasses how most works propagate contextual information. We also

make the distinction between DeepNeural Graph Networks4 (DNGNs), Deep Bayesian

Graph Networks (DBGNs), i.e., probabilistic and deep models for graphs, and DeepGen-

erative Graph Networks (DGGNs) [97], i.e., models that are able to generate new and

original graphs. Notice that, in principle, one can also combine different context propa-

gation mechanisms if the task is more complex than the usual, for instance by exploiting

both feedforward and recurrent mechanisms to handle graphs that vary in time.
4Which are ambiguously referred to as Graph Neural Networks in the literature.
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3.2.4 Core Modules

We are finally ready to describe the main mechanisms of Deep Graph Networks. Not

only will these accompany us in the next chapters, making it easier to understand the

rationale behind some of our technical choices, but they will also give a unifying view of

the different approaches in the literature, which is one of the main contribution of this

thesis.

Neighborhood Aggregation

The definition of the permutation invariant function computing the local encoding of

each vertex in the graph is arguably the key building block of any DGN. Indeed, this

neighborhood aggregation function imposes an architectural bias that has important

consequences on the representational power of the model under consideration. A very

straightforward form of neighborhood aggregation is

h`+1
v = φ`+1

(
h`v, Ψ({ψ`+1(h`u) | u ∈ Nv})

)
, (3.1)

where φ and ψ are adaptive transformations of the input, e.g., Multi Layer Perceptrons.

It can be shown [1, 41] how Equation 3.1 is a generalization of some of the most known

aggregation schemes, such as the Graph Convolutional Network [70] and the Graph

Isomorphism Network (GIN) [109]. Besides, these architectures ignore any additional

information on the nature of the relation between vertices, which is usually stored by

edge attributes. In chemistry, for instance, it is common to have discrete edge features

describing the type of bond between atoms as well as continuous values associated with

their inter-atomic distance. In the former case of Ag finite and discrete, one can extend

the previous equation with additional parameters wck to be learned for each discrete edge

label ck:

h`+1
v = φ`+1

(
h`v,

∑
ck∈A

(
Ψ({ψ`+1(h`u) | u ∈ N ck

v }) ∗ wck
))
,

where the symbol ∗ stands for multiplication between a scalar and a vector and we recall,

from Section 2.2.1, that N ck
v is the subset of v’s neighbors whose connecting edges have

label ck. This is another form of stationarity over edge weights, since we are dealing

with non-positional graphs. If graphs were positional, we could use a different weight for

each position and each edge type. Also, please take note of how we grouped neighbors

of v according to their edge type; this is a practice that will be implemented in the next

chapter. In the literature, NN4G [107] and the Relational Graph Convolutional Network

(R-GCN) [147] are just some of the models implementing this aggregation scheme.
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On the contrary, if edge features auv are continuous, one can easily combine vertex and

edge states:

h`+1
v = φ`

(
h`v, Ψ({e`+1(auv) · ψ`+1(h`u) | u ∈ Nv})

)
,

with · standing for the Hadamart product between vectors. The Message Passing Neural

Network framework (MPNN) [137] and the Edge Conditioned Convolution (ECC) [148]

implement this kind of aggregation at the expense of extra computation for the edges,

which can significantly slow down the algorithm.

A natural question that comes to mind at this point is “even though the graph is non-

positional, should we treat all neighbors as equal?”. In fact, we may not, and that is the

idea behind the attention mechanism [149] applied to the neighborhood aggregation of

DNGNs. First of all, consider having a way to compute some sort of similarity score

αuv between two vertex states hu and hv. We can extend the aggregation mechanism of

Equation 3.1 to re-weight neighbors according to such a score:

h`+1
v = φ`+1

(
h`v, Ψ({α`+1

uv ∗ ψ`+1(h`u) | u ∈ Nv})
)
.

We impose no restriction on how to compute αuv but for the procedure being differ-

entiable or non-adaptive. Nothing prevents us from combining the above equations to

obtain an attention score that depends, for example, on edge features. The Graph Atten-

tion Network (GAT) [141] was the first model to apply a multi-head attention mechanism

to a Deep Graph Network, with potential advantages in terms of interpretability.

From the above equations, it emerges how the time complexity of Deep Graph Networks

is strictly related to the number of edges in the input graphs. Nevertheless, trying to

scale DGNs to graphs with billions of edges poses two major challenges: first, the training

time required is often unbearable for modest computing devices; secondly, the degree of

some vertices is so high that aggregating all neighboring states can lead to numerical

instability or oversmoothing, subject to the permutation invariant operator used. To

mitigate these issues, sampling techniques have been proposed to reduce the set of

neighbors to aggregate for each vertex. The idea is schematically represented in Figure

3.5, and it has been adopted by architectures like FastGCN [150] and GraphSAGE [151]

to improve the generalization performances on different tasks. Moreover, sampling is not

necessarily constrained to the immediate neighbors of a vertex: one can provide a more

flexible notion of neighborhood, such as “all vertices at distance 2”, and sample from that

set [151]. This way, a wider and richer neighborhood can be explored, similarly to the

random walks technique briefly mentioned at the end of last chapter.
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v

Nv
Figure 3.5: Sampling neighbors allows to keep the computational complexity of the
aggregation function fixed and, sometimes, provides better generalization performances.

To conclude this section, we provide a table with different neighborhood aggregation

schemes under the same uniform mathematical notation introduced so far. Note that

one can also combine different aggregations together to increase the expressiveness of

the model; this approach is adopted by models like Principal Neighborhood Aggregation

[152].

Model Neighborhood Aggregation

NN4G [107] σ
(
w`+1T

xv +
∑`

i=0

∑
ck∈C

∑
u∈N ck

v
wi

ck
∗ hi

u

)
GNN [130]

∑
u∈Nv

MLP `+1
(
xu,xv,auv,h

`
u

)
GraphESN [153] σ

(
W`+1xu + Ŵ`+1[h`

u1
, . . . ,h`

uNv
]
)

GCN [70] σ
(
W`+1

∑
u∈N (v) Lvuh`

u

)
GAT [141] σ

(∑
u∈Nv

α`+1
uv ∗W`+1hu

)
ECC [148] σ

(
1
|Nv|

∑
u∈Nv

MLP `+1(auv)Th`
u

)
R-GCN [147] σ

(∑
ck∈C

∑
u∈N ck

v

1
|N ck

v |
W`+1

ck
h`
u + W`+1h`

v

)
GraphSAGE [151] σ

(
W`+1( 1

|Nv| [h
`
v,
∑

u∈Nv
h`
u])
)

CGMM [6–8]
∑`

i=0 w
i ∗
(∑

ck∈C w
i
ck
∗
(

1
|N ck

v |
∑

u∈N ck
v

hi
u

))
GIN [109] MLP `+1

((
1 + ε`+1

)
h`
v +

∑
u∈Nv

h`
u

)
Table 3.1: Here are some preeminent examples of neighborhood aggregation schemes
present in the literature. We use square brackets to denote concatenation, whereas
W,w and ε are weight to be learned. GraphESN’s aggregation looks different because
it assumes a maximum size of the neighborhood, but the core principles are the same.
Also, we describe the mean version of GraphSAGE, though variations are possible.
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Graph Coarsening

Separate from neighborhood aggregation, graph pooling is an (optional) independent

module of a deep feedforward architecture that coarsens the latent graph representations

in order to reduce the number of vertices. The purpose of graph pooling is three-fold, i.e.,

discover communities in the input graph, encode such knowledge in the vertex states, and

finally to reduce the computational costs of the subsequent neighborhood aggregation

modules. We can distinguish between adaptive pooling, whose parameters are learned

using gradient descent techniques, and topological pooling, which leverages the topolog-

ical properties of the graph with known non-adaptive algorithms. The idea of pooling is

sketched in Figure 3.6.

hunew

hv

Figure 3.6: A pooling layer coarsens vertex representations to obtained a reduced
graph representation that should encode higher-level details.

Adaptive pooling applies a differentiable transformation to vertex representations in order

to produce soft cluster assignment scores, such as DiffPool [154]. The drawback of these

methods is that they produce a dense adjacency matrix in output, which can become

even more costly than the original graph if the number of chosen clusters is sufficiently

large. Other approaches like Top-k pooling [155] try to address this problem by retaining

only the top-k vertices according to some ranking. Also, adaptive pooling techniques are

not restricted to vertices, rather they can be applied to edges [156] by collapsing vertices

incident to the highest ranking edges.

Topological pooling, on the other hand, is non-adaptive and inspired by classical com-

munity discovery algorithms. The striking computational advantage of this family of

pooling methods is that coarsened graphs can often be precomputed, thus significantly

reducing the computational burden of the subsequent training phase. Among them, we

mention spectral clustering approaches such as GRACLUS [157] and ARMA filters [158],

as well as methods based on non-negative matrix factorization [159] and the k-plex cover

algororithm [160].
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Recently, there has been some criticism about the true benefits of pooling for graph

classification on small datasets [161]. Local pooling was shown to become progressively

invariant to cluster assignments of vertices, and simple baselines performed as well as

methods employing pooling layers. Nevertheless, pooling can still be used to detect some

form of community in the graph when we know there exists a latent hierarchy.

Global Aggregation

Whenever the task requires it, it may be necessary to aggregate all vertex representations

to produce a single graph state summarizing all the information extracted by the model.

Because there exists no topological ordering among vertices in general, we almost al-

ways rely on another permutation invariant function to compute the graph state at each

iteration `:

h`g = Ψ
(
{f(h`v) | v ∈ Vg}

)
. (3.2)

Common choices for f and Ψ are the identity function and the element-wise sum, mean

or max operators, even though nothing prevents us from using approximations of uni-

versal aggregators over multisets [116, 117]. In this manuscript, we will consider a graph

representation that is the layer-wise concatenation of all graph states, in order to con-

sider multiple “views” of the graph extracted by the model. Alternatives are possible

though: [139] applies a Long Short-Term Memory (LSTM) [3] to the sequence of graph

states {h0
g, . . . ,h

`
g, . . . }, whereas Sort Pooling picks a subset of vertex states according

to a lexicographic ordering of such states [162].

To summarize the building blocks introduced so far, Figure 3.7 sketches a comparison

between a feedforward architecture and a recurrent model for graphs, where branches

indicate that we are either solving vertex or graph related tasks. Note how the feed-

forward network uses differently parametrized layers, in contrast to the single layer of

a recurrent network. The application of pooling and of a global transduction can only

occur in graph related tasks, since the topology of the output is irremediably changed

by these operations. On top of these architectures, which implement the transductions

Tend and, optionally, R of Figure 3.1, we can apply an output module implementing the

Tout transduction.

3.2.5 Learning Criteria

Throughout the following chapters, we will deal with both unsupervised and supervised

learning tasks such as maximum likelihood estimation on graphs, link prediction, vertex
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Figure 3.7: Putting everything together: a comparative example between feedforward
(top) and recurrent (bottom) DGNs. See the text for more details.

and graph classification. Therefore, it is useful to revise how researchers have approached

these tasks in the past.

Unsupervised Learning

Themaximum likelihood estimation criterion is just one of the ways in which we can

train a DGN in an unsupervised fashion. For instance, one can maximize the likelihood

of all vertex features conditioned on the graph information, as described in detail in the

following chapter. Whenever the graphical model does not allow a tractable computation

of the likelihood, variational approximations can come in handy to train the model in a

reasonable amount of time [60, 81]. As an alternative, reasearchers have also proposed

ways to directly capture the distribution of a graph P (g|θ), by combining a graph encoder

with a radial basis function network, as well as providing a definition of attributed

random graphs [163, 164].

Predicting the existence of a link between entities can be very helpful in application do-

mains such as drug repurposing and recommender systems [165–167]. Link prediction
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tasks use the structure of the graphs in the dataset to train a model to reconstruct the

adjacency matrix and predict missing links, so in some sense they correspond to a form

of self-supervision. The most adopted loss is called reconstruction loss, adapted from

auto-encoders:

Lrec(g) =
∑
(u,v)

||hv − hu||2,

which also has a probabilistic formulation [81]:

P ((u, v) ∈ Eg | hu,hv) = σ(hu
Thv).

It is important to remark that the reconstruction loss does not take into account vertex

or edge features, and that it is mainly based on the homophily assumption: adjacent

vertices are more likely to share the same characteristics and/or target label [168]. In

tasks where the homophily assumption is verified, it might be advantageous to use this

loss as a regularizer.

Another relevant unsupervised criterion is that of graph clustering, i.e., partitioning a

graph into groups of vertices that share some similarity. Self-Organizing Maps (SOMs)

[169] have been one of the most successful approaches to perform clustering on DAGs

[170–172], before being extended to cyclic graphs [164, 173–175].

Borrowing ideas from information theory,mutual information approaches try to create

representations that approximately maximize the mutual information between pairs of

graphs. Deep Graph Infomax (DGI) [176] trains a discriminator to distinguish between a

graph and its corrupted version, where the corruption algorithm must be defined a priori.

The authors show that this kind of training indirectly maximizes the mutual information

between graphs in the dataset. Similarly, the entropy of a categorical distribution can

be used to regularize the soft-clustering matrix produced by adaptive pooling techniques

such as DiffPool. Entropy can be used to encourage the pooling layer to produce one-hot

assignments to the clusters for each vertex, even though it does not solve the “dense

output adjacency matrix” problem.

Supervised Learning

The most common supervised tasks in which DGNs are involved are vertex classification,

graph classification, and graph regression. In vertex classification, the goal is to assign

a target label to each vertex in the graph. We also distinguish between inductive vertex

classification, where the vertices to classify belong to unseen graphs, and tranductive

vertex classification, which consists of vertex predictions on a single (large) graph with
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some known vertex targets. Transductive vertex classification has suffered from serious

reproducibility issues, due to arbitrary choices in the experimental setups regarding the

same tasks [177]; in particular, it emerged that the data split was highly influential on

these datasets. While there is a large stream of works around this “semi-supervised”

setting, Bayesian approaches seem the more robust ones when few training labels are

available [178]. In particular, one can implement a Bayesian version of the GCN model

and marginalize over the neural network parameters when it comes to predict a new

vertex label. This method can be extended to a nonparametric scenario, giving rise to

a Bayesian version of the Variational Graph Autoencoder [81] that better models the

adjacency matrix generation by taking into account noisy data [179].

As regards graph classification and regression, one usually applies a standard ma-

chine learning predictor on top of the graph representation computed using the techniques

described earlier. The objectives to be minimized are the usual Cross-Entropy (CE) loss

or the Mean Squared Error (MSE) Notwithstanding the simplicity of this approach, we

noticed the same troubling trends in scholarship on a series of graph classification bench-

marks [5]. Therefore, a contribution of this thesis, which we shall introduce in a moment,

will be about addressing such issues.

Self-supervised Learning

Recently, many self-supervision objectives have been proposed to pretrain Deep Neural

Graph Networks [180]. These include predicting the surrounding neighborhood informa-

tion of vertices and using attribute masking strategies similar to those employed in the

Natural Language Processing field [181] More generally, approaches to self-supervised

learning for graphs can be divided into those that generate the feature and adjacency

matrices, others than exploit contrastive learning based on information theory criteria,

some that try to predict known properties of the graphs under consideration, and hybrid

ones [182].

Summary

We have presented all the basic building blocks that allow us to reason about the main

differences between deep architectures for graphs. To complement the discussion, we

present a recap of the main properties of some DGNs in the literature. Specifically,

Table 3.2 divides models by their style of context propagation, learning task, how layers

are chosen, their intrinsic nature, and building blocks.
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Broadly speaking, whether it is crafting a new DGN or choosing an existing one, one

always has to keep in mind the characteristics of the task at hand, the available data,

and the computational constraints. We can make a trivial example when considering the

inductive bias of the neighborhood aggregation mechanism: if the task benefited from

knowing the degree of each vertex, then a sum-based aggregation function would be the

obvious choice. In contrast, when one wants to capture how neighboring representations

are distributed around each vertex, a mean-based aggregation is an adequate, not to

mention numerically stable, alternative. When the amount of supervised labels is lim-

ited, expressive models like GIN are prone to severely overfit the training data [109],

so either one carefully applies a regularization strategy or a simpler, less parametrized

aggregation like the ones of GraphSAGE or GCN is used. In cases where the amount of

raw graphs is also much larger than the supervised samples or we need to quickly adapt

to new tasks without retraining the entire model, unsupervised vertex/graph embedding

mechanisms such as CGMM (Chapter 4) may be a viable technique to consider. In terms

of computational requirements, taking into account edges and their features usually leads

to an increase in the parameters of each DGN. This is because models like GAT apply

multiple adaptive, non-linear transformations to each pair of adjacent vertex represen-

tations to compute an importance score for each neighbor, whereas others such as ECC

transform each edge feature vector by means of an MLP. When applied to large and dense

graphs, these models quickly become computationally demanding (see, for instance, Sec-

tion 3.3). Here, exploiting any domain knowledge could be important to avoid such

parametrizations and inject a favorable inductive bias into the model; as an example, if

an atom is connected to others in space, the inverse of the inter-atomic distance could be

exploited to diminish the importance of far-away atoms when aggregating neighbors in

case the homophily assumption holds. More in general, whenever training is considered

prohibitive because of hardware constraints and an extremely efficient solution is needed,

GraphESN and FDGNN provide an advantageous trade-off between performances and

a fully supervised training approach, and they can be considered good baselines against

which to compare because of the randomized, untrained nature of the embedding con-

struction. To conclude these consideration, it has to be mentioned that very few works

in the field have tried to automatically determine the “right” number of graph convolu-

tional layers to use for the underlying task during training. In this sense, NN4G also

stands out as a pioneering approach that applies the principle of Cascade Correlation to

tackle the task in a divide-et-impera fashion, by training one layer at a time. We believe

that this could be an understudied research direction, especially as regards unsupervised

and self-supervised methods that could mitigate the need of cross-validating this crucial

hyper-parameter.
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Model Context Embedding Layers Nature
GNN [130] Recurrent Supervised Single Neural
NN4G [107] Constructive Supervised Adaptive Neural
GraphESN [153] Recurrent Untrained Single Neural
GCN [70] Feedforward Supervised Fixed Neural
GG-NN [139] Recurrent Supervised Fixed Neural
ECC [148] Feedforward Supervised Fixed Neural
GraphSAGE[151] Feedforward Both Fixed Neural
CGMM [6, 7] Constructive Unsupervised Fixed Probabilistic
E-CGMM [8] Constructive Unsupervised Fixed Probabilistic
iCGMM (4.3) Constructive Unsupervised Fixed Probabilistic
DGCNN [162] Feedforward Supervised Fixed Neural
DiffPool [154] Feedforward Supervised Fixed Neural
GAT [141] Feedforward Supervised Fixed Neural
R-GCN [147] Feedforward Supervised Fixed Neural
DGI [176] Feedforward Unsupervised Fixed Neural
GMNN [60] Feedforward Both Fixed Hybrid
GIN [109] Feedforward Supervised Fixed Neural
NMFPool [159] Feedforward Supervised Fixed Neural
SAGPool [183] Feedforward Supervised Fixed Neural
Top-k Pool [155] Feedforward Supervised Fixed Neural
FDGNN [140] Recurrent Untrained Fixed Neural
GMDN [9] Feedforward Supervised Fixed Hybrid

Model Edges Pooling Attention Sampling
GNN [130] Continuous 7 7 7

NN4G [107] Discrete 7 7 7

GraphESN [153] 7 7 7 7

GCN [70] 7 7 7 7

GG-NN [139] 7 7 7 7

ECC [148] Continuous Topological 7 7

GraphSAGE[151] 7 7 7 3

CGMM [6, 7] Discrete 7 7 7

E-CGMM [8] Continuous 7 7 7

iCGMM (4.3) 7 7 7 7

DiffPool [154] - Adaptive - -
DGCNN [162] 7 Topological 7 7

GAT [141] 7 7 3 7

R-GCN [147] Discrete 7 7 7

GMNN [60] - - - -
DGI [176] 7 7 7 3

GIN [109] 7 7 7 7

NMFPool [159] - Topological - -
SAGPool [183] - Adaptive - -
Top-k Pool [155] - Adaptive - -
FDGNN [140] 7 7 7 3

GMDN [9] - - - -

Table 3.2: Recap of DGNs’ properties. When the symbol “-” is used, we mean “not
applicable”, as the row refers to a framework rather than a single model.
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3.3 Scholarship Issues in Graph Classification [5]

Experimental reproducibility and replicability are core aspects of empirical machine

learning. From time to time, researchers have warned their communities about flaws

in scholarship regarding streams of scientific publications [184–186]. However, trying to

correct bad practices does not take just one publication, rather a collective effort is re-

quired to acknowledge the current issues and take immediate action. Common examples

of these troubling trends are the ambiguous or poorly detailed experimental settings,

unfair comparison due to the use of different data features and/or data splits, cherry-

picking of hyper-parameters on the basis of test set performances, and the impossibility

of reproducing the results using the code provided by the authors. In turn, this means

we are often unable to confidently assess which empirical methodology performs best on

a given learning task.

The situation is not much different in the graph learning community. After the recent

re-discovery of the core ideas and the subsequent exponential growth of scientific pub-

lications, it can be argued that little attention was devoted to ensure a fair and robust

model assessment between models. A striking example can be found in some vertex

classification benchmarks, where it was found that the use of different training/valida-

tion/test splits could completely alter the final performance ranking [177]. Indeed, in

some papers, data splits were generated at random simply because there existed no com-

mon agreement on the evaluation criteria. Similarly, concerns have been raised about

neural recommender systems, most of which cannot perform better than a very simple

baseline [187].

This section describes our attempt to mitigate the lack of standardization of empirical

comparisons in the graph classification scenario [5]. As a matter of fact, we observed

that many practitioners did not provide thorough information about the two main steps

of any machine learning evaluation, namely model selection and risk assessment.

Failure to keep these phases well separated often leads to over-optimistic estimates of

the generalization performances, but it also generates confusion and doubts among other

researchers while building on previous results; this can easily mislead them into repeating

the same methodological errors. Before continuing, let us briefly recall the basics of risk

assessment and model selection.

Risk Assessment. To provide an estimate of the generalization performance of each

model, a risk assessment procedure has to be followed. Risk assessment relies on a test set

that must be used only after the chosen model configuration has been trained. If a test set

is not given in advance, one can adopt a simple holdout split or, like we did, a k-fold Cross
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Validation (CV) [188–190] scheme to generate k different training/test partitions (called

folds) of the dataset. For each partition, we should perform an internal model selection

procedure (based on the training set only) that picks the best hyper-parameters for

that specific partition. This way, test data is never used to select the hyper-parameters,

such as number of epochs, layers or hidden units. Note that, as model selection is

performed independently for each fold, we obtain k different “best” configurations. This

is why one should talk about the performance of the class of models rather than a single

configuration. We would like to stress here that the best configuration overall does not

exist because of the No Free Lunch Theorem [191].

Model Selection. Inside each fold, the selection of the best hyper-parameters usually

happens via another holdout strategy or an inner k-fold CV, where this time the “outer”

training data is further partitioned into training and validation sets (unless a validation

set is already available). Because the best hyper-parameters’ configuration is selected on

the basis of validation performances, the key thing to remember is that these results are

biased estimates of the true generalization capabilities of a model. Hence, it would be

trivial to obtain state-of-the-art results by comparing models on validation performances:

just find the configuration that maximizes the performance metric on the validation set.

This is a bad practice we clearly want to avoid.

3.3.1 Chosen Criteria

Similarly to what has been done in [187], we first listed some relevant requirements for

reproducibility: i) code for data preprocessing, model selection, and risk assessment

is provided; ii) data splits are available; iii) data is split according to a stratification

technique that preserves class proportions across all folds; iv) results are reported using

standard deviations, and they refer to model evaluation (test set) rather than model

selection (validation set).

We then selected the DGNs to re-evaluate according to basic principles: i) their graph

classification performance obtained using a 10-fold cross validation; ii) peer-reviewed

status; iii) architectural differences; iv) popularity. We ended up choosing DGCNN

[162], DiffPool [154], ECC [148], GIN [109], and GraphSAGE [151], though the latter

was not applied to graph classification tasks in the original paper. Table 3.3 summarizes

our findings.

From the table, it seems that some of the most popular models from the literature did

not meet all the listed criteria that would foster empirical reproducibility. Let us now

expand the discussion about each model by highlighting the problems we found.
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DGCNN DiffPool ECC GIN

Data preprocessing code Y Y - Y
Model selection code N N - N
Model evaluation code Y Y - Y
Data splits provided Y N N Y
Label Stratification Y N - Y
Report accuracy on test Y A A N
Report standard deviations Y N N Y

Table 3.3: Criteria for reproducibility considered in this work and their compliance
among the considered models. (Y) indicates that the criterion is met, (N) indicates
that the criterion is not satisfied, (A) indicates ambiguity (i.e. it is unclear whether the

criteria is met or not), (-) indicates lack of information.

DGCNN In this paper, the architecture was fixed for all datasets. Although sub-

optimal, learning rate and number of training epochs were tuned using only one of the

10 folds and then reused on all the other folds. We could not find the code to perform

model selection despite the rest of it being publicly available. Moreover, the authors ran

the 10-fold CV procedure 10 times5 and reported the average of the 10 final scores, each

of which had already been averaged over the 10 folds. As a result, the variance of the

provided estimates was greatly reduced. This experimental setup, however, was different

from the one used in other works, and thus we cannot reliably assess the variance of the

models under the same setting.

DiffPool From both the paper and the provided code, it is unclear if reported results

were obtained on the test set rather than the validation set. The authors stated that 10-

fold CV was used, but standard deviations were not reported. There are some statements

in the paper about applying early stopping on the validation set, but neither model

selection code nor validation splits were made available. We also found that target

stratification was not applied to the data splits and no random seed was set, hence

we can assume the generated data splits were different each time the code was being

executed.

ECC As in DiffPool, the paper lacks standard deviation values in the results. Likewise

DGCNN, hyper-parameters were fixed in advance, hence it is not clear if and how model

selection was performed. Importantly, there are no references in the code repository to

data pre-processing, data stratification, data splitting, and model selection. This makes

ECC the least reproducible model among those considered.
5This was computationally feasible since model selection is performed only once per CV.
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GIN Here we observed another kind of troubling trend. The authors did a good job in

listing the ranges of hyper-parameters tried. However, as stated explicitly in the paper

and in the public review discussion, they report the mean validation accuracy of a 10-

fold CV. In other words, the reported results refer to model selection and not to risk

assessment. Furthermore, the code for model selection is not provided.

GraphSAGE This model is often used in other papers as a strong baseline [109, 154].

Nonetheless, the code to reproduce such experiments on graph classification has never

been provided.

Summary It is this ample empirical inconsistency that has motivated a re-evaluation

of these models within a rigorous, reproducible and fair environment. Our code has been

publicly released alongside the data splits.6

3.3.2 Experimental Setting

The assessment of the above models is carried out on 9 graph classification datasets,

four of which are chemical and five social. We considered D&D [192], PROTEINS [193],

NCI1 [194] and ENZYMES [195] as binary classification chemical tasks, whereas IMDB-

BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-5K, and COLLAB [47] are social

benchmarks. We report the statistics of these datasets in Table 3.4.

# Graphs # Classes # Vertices # Edges # Vertex feat.

C
h
em

. D&D 1178 2 284.32 715.66 89
ENZYMES 600 6 32.63 64.14 3+18
NCI1 4110 2 29.87 32.30 37
PROTEINS 1113 2 39.06 72.82 3

S
o
ci

a
l

COLLAB 5000 3 74.49 2457.78 -
IMDB-BINARY 1000 2 19.77 96.53 -
IMDB-MULTI 1500 3 13.00 65.94 -
REDDIT-BINARY 2000 2 429.63 497.75 -
REDDIT-5K 4999 5 508.82 594.87 -

Table 3.4: Dataset statistics. Following the literature, we use both the 18 continuous
and 3 discrete vertex attributes in the case of ENZYMES. All other vertex features

belong to a finite and discrete alphabet representing atom types.

As the reader can observe, the social datasets lack any kind of feature information about

vertices or edges. For this reason, we will double the re-evaluations on the social tasks

to consider two scenarios, that is, one in which vertex features hold a constant value 1

6https://github.com/diningphil/gnn-comparison.

https://github.com/diningphil/gnn-comparison
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and another in which the vertex degree is treated as the sole continuous feature. This

way, we can study the effect of the inductive bias imposed by different realizations of a

DGN’s layer.

It is worth mentioning that in the past different choices for the vertex features have

been made [109, 154], but the competing models were rarely compared under the same

conditions.

Structure-agnostic Baselines The importance of proper baselines has been mostly

underrated when it comes to DGNs. Yet, designing a good baseline is of paramount

importance to discern between real and fallacious progress. In our specific case, testing

whether structural information truly is meaningful for the task is more than just a double-

check, as we will see. When DGNs performances closely match those of a structure-

agnostic baseline, we can draw two conclusions: either the task does not need topological

information to be solved or the models we have developed are not “powerful” enough.

Whilst one may involve domain experts to check if the former conclusion is valid, the

latter is more involved as multiple factors come into play, such as the amount of training

data, the structural inductive bias we imposed through the architecture, and the hyper-

parameters tried. On the contrary, a significant boost in performances can only indicate

that the graph topology is relevant to solve the task.

Therefore, we adopted distinct baselines for the two families of datasets. On chemical

datasets, with the exception of ENZYMES, we follow [43] and implement the Molecular

Fingerprint technique. A Molecular Fingerprint is obtained by first applying a global

sum aggregation R, i.e., counting the occurrences of all atom types in the graph, followed

by a single-layer MLP with ReLU activations that implements Tout. Instead, on social

domains and ENZYMES (due to the presence of additional features), we follow [116]

and learn permutation-invariant functions over sets of vertices. This is done by first

transforming the vertex features with a single-layer MLP, which are then aggregated via

sum operator and passed to another single-layer MLP for the final classification. Hence,

none of these baselines exploit the information contained in the adjacency matrix.

Setup and Hyper-parameters For the rest of the section, the evaluation setup shall

consist of a 10-fold CV for risk assessment with a holdout model selection strategy inside

each fold. This choice was made to keep the re-evaluation as close as possible to the

procedure followed by most models. We also schematically represent it in Figure 3.8,

where it becomes clearer how the computational requirements are proportional to kout
and the number of configurations tried for each model selection.
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Dataset

fold1 fold2 foldkout

Test Trainout

. . .

Trainout TrainoutTest

TestTrainout

...

split

repeat
kout

times

Model Assessment:
Average

Test Results

Holdout Model Selection

Valid.Traininn

Select best
hyper-parameters

according to validation
performance

Figure 3.8: The evaluation framework used for the re-evaluation of some DNGNs
consists of a 10-fold cross validation for risk assessment, where we carry out an inner

holdout model selection for each outer fold.

The holdout strategy partitions the Trainout set into Traininn and Validation sets (90%

and 10% respectively). After every model selection, the best configuration for the outer

fold is re-trained 3 times on Trainout, holding out a random subset of the data (10%) to

perform early stopping. The separate training runs are needed to counteract the effect

of an unfavorable random initialization on test performances. Finally, performances on

the unseen test sets are averaged over the 3 final runs. We implemented early stopping

[196] with patience n, meaning we stop training when the validation metric of interest

(the accuracy), has not improved for n epochs. All data splits, with the exception of the

random validation set in the final runs, have been precomputed, thus ensuring the models

are cross-validated and assessed on the same data. Also, we applied a stratification

strategy to ensure that class proportions are preserved. Table 3.5 summarizes what said

so far.

Model selection relies on grid search, and the hyper-parameters’ configurations for each

model are shown in Table 3.6. We always included the hyper-parameters mentioned

in the original papers, but we also di our best to ensure a fair comparison in terms of

number of parameters and configurations to try.
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Algorithm 1 Model Assessment (k-fold CV)
1: Input: Dataset D, set of configurations Θ
2: Split D into k folds F1, . . . , Fk
3: for i← 1, . . . , k do
4: traink, testk ←

(⋃
j 6=i Fj

)
, Fi

5: bestk ← Select(traink, Θ)
6: for r ← 1, . . . , R do
7: modelr ← Train(traink, bestk)
8: pr ← Eval(modelk, testk)
9: end for

10: perfk ←
∑R

r=1 pr/R
11: end for
12: return

∑k
i=1 perfi/k

Algorithm 2 Model Selection
1: Input: traink, Θ
2: Split traink into train and valid
3: pθ = ∅
4: for each θ ∈ Θ do
5: model ← Train(traink, θ)
6: pθ ← pθ ∪ Eval(model, valid)
7: end for
8: bestθ ← argmaxθ pθ
9: return bestθ

Table 3.5: Pseudo-code for model assessment (left) and model selection (right). “Se-
lect” refers to the model selection procedure, whereas “Train” and “Eval” represent

training and prediction phases, respectively.

Computationally speaking, we had to run a very large number of experiments, which

took months to complete. For each model, we tried a number of configurations ranging

from 32 to 72, due to the varying number of hyper-parameters to select. The total effort

amounted to more than 47000 training runs, which clearly required an extensive use of

parallelism. We leveraged both multi-CPU and multi-GPU machines to complete these

tasks in a reasonable amount of time. Nonetheless, training models such as ECC would

have required more than 72 hours for a single training run on some social datasets.

Allowing these models to complete their training would have dramatically slowed down

the process; for these reason, due to the large amount of experiments to run and the

limited amount of computational resources, we set a time limit of 72 hours to complete

a single training run.
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3.3.3 Results

We present the results on chemical and social benchmarks in Tables 3.7 and 3.8, respec-

tively. Some observations can be made: first of all, none of the DGNs seem to improve

over the performance of the structure-agnostic baseline on three out of four chemical

datasets. On the other hand, the baseline cannot reach the same performance of DGNs

on the NCI1 dataset. To confirm that this is not due to the under-parametrization of the

baseline, we trained a configuration with 10000 hidden units and no regularization. The

training accuracy reached a modest 67%, whereas a DGN like GIN can easily overfit the

training set. This provides unambiguous evidence that structural information is actually

relevant for the task. In social datasets, the addition of vertex degrees makes the baseline

very competitive w.r.t. most models, but the GIN model has the best accuracy scores in

almost all social tasks.

D&D NCI1 PROTEINS ENZYMES

Baseline 78.4± 4.5 69.8± 2.2 75.8± 3.7 65.2± 6.4
DGCNN 76.6± 4.3 76.4± 1.7 72.9± 3.5 38.9± 5.7
DiffPool 75.0± 3.5 76.9± 1.9 73.7± 3.5 59.5± 5.6
ECC 72.6± 4.1 76.2± 1.4 72.3± 3.4 29.5± 8.2
GIN 75.3± 2.9 80.0± 1.4 73.3± 4.0 59.6± 4.5
GraphSAGE 72.9± 2.0 76.0± 1.8 73.0± 4.5 58.2± 6.0

Table 3.7: Results on chemical datasets with mean accuracy and standard deviation
are reported. Best average performances are highlighted in bold.

IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

N
o

F
ea

tu
r
es

Baseline 50.7± 2.4 36.1± 3.0 72.1± 7.8 35.1± 1.4 55.0± 1.9

DGCNN 53.3± 5.0 38.6± 2.2 77.1± 2.9 35.7± 1.8 57.4± 1.9

DiffPool 68.3± 6.1 45.1± 3.2 76.6± 2.4 34.6± 2.0 67.7± 1.9

ECC 67.8± 4.8 44.8± 3.1 OOR OOR OOR
GIN 66.8± 3.9 42.2± 4.6 87.0± 4.4 53.8± 5.9 75.9± 1.9

GraphSAGE 69.9± 4.6 47.2± 3.6 86.1± 2.0 49.9± 1.7 71.6± 1.5

W
it

h
D

eg
r
ee

Baseline 70.8± 5.0 49.1± 3.5 82.2± 3.0 52.2± 1.5 70.2± 1.5

DGCNN 69.2± 3.0 45.6± 3.4 87.8± 2.5 49.2± 1.2 71.2± 1.9

DiffPool 68.4± 3.3 45.6± 3.4 89.1± 1.6 53.8± 1.4 68.9± 2.0

ECC 67.7± 2.8 43.5± 3.1 OOR OOR OOR
GIN 71.2± 3.9 48.5± 3.3 89.9± 1.9 56.1± 1.7 75.6± 2.3

GraphSAGE 68.8± 4.5 47.6± 3.5 84.3± 1.9 50.0± 1.3 73.9± 1.7

Table 3.8: Results on social datasets with mean accuracy and standard deviation
are reported. Best average performances are highlighted in bold. OOR means Out of

Resources, either time (> 72 hours for a single training) or GPU memory.

From these results, it is clear how structure-agnostic baselines represent an essential tool

to understand the impact of using DGNs. But we can extract further insights too: since
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structural features are known to correlate with molecular properties [197], it is possible

that the actual DGNs are still not able to extract what is needed to solve the above

chemical tasks. Also, the relatively high standard deviations should suggest caution

when arguing that a model performs better than another because of small (averaged)

performance gains. It is highly likely, in fact, that such performance fluctuations are

caused by random initializations, rather than being actual empirical progress.

It is also interesting to see how the addition of a simple feature like the vertex degree is

able to provide significant performance gains on the social datasets. Indeed, the baseline

provides from 10% to 20% better accuracy with this kind of information, and it even

achieves state of the art results on IMDB-BINARY. As regards DGNs, instead, the

effect of the degree seems to be less relevant, which is reasonable since the first layer

can (in principle) compute the degree by summing neighboring features. One notable

exception is DGCNN, which explicitly needs the degree as a vertex feature to improve

the performances. Last but not least, the addition of this feature produces completely

different rankings, much alike what happened in [177]. This demonstrates how important

it is to compare different methods while using the same set of features.

Since the degree of a vertex can be computed with a simple sum-based neighborhood

aggregation, we compare the median “best” number of layers chosen across the 10 different

folds in the two social settings. Results are reported in Table 3.9. There exists a general

trend, with the exception of GraphSAGE, in which the best number of layers is reduced

by approximately 1 when we add the degree feature. Therefore, our intuitive reasoning

about the inductive bias of DGNs architectures seems supported by evidence.

IMDB-B IMDB-M REDDIT-B REDDIT-M COLLAB

1 DEG 1 DEG 1 DEG 1 DEG 1 DEG

DGCNN 3 3 3.5 3 4 3 3 2 4 2
DiffPool 1 2 2 1 2 2 2 1 2 1.5
ECC 1 2 1 1 - - - - - -
GIN 3 2 4 2 4 4 4 3 4 4
GraphSAGE 4 3 5 4 3 4 3 5 3 5

Table 3.9: We report the median number of selected layers per model, depending
on whether vertex degrees are used as input features or not. A “1” indicates that an

uninformative feature is used as the vertex label.

Finally, to show that our estimates are actually much lower than what has been reported

in the literature, we visually compare our averaged values with those of the original

papers. In addition, we plot the best validation scores averaged across the 10 different

model selections, so that we can clearly see how far from the (empirical) truth we can get
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Figure 3.9: Chemical and social (with degree) benchmark results are shown together
with published results (when available). For each of them, we report validation and test
accuracy of the evaluated models, together with published results (when available).

when reporting validation scores. Figure 3.9 confirms that the gap between the validation

and test estimates is usually consistent, with validation scores overestimating the true

generalization performances of the model.

To conclude this section, we briefly mention that subsequent effort has been made to put

together larger datasets [198, 199] and standardize the evaluation process7. Open Graph

Benchmark [198] is a collection of graph-related tasks, each with its own evaluation pro-

cess with fixed performance metrics. In another work [199], larger benchmarks related to

chemistry, the travel-salesman problem, and image classification are proposed, together

with an assessment of some models taken from the literature. It should be noted that

in [199] the numbers are approximated estimates of the generalization performances of

each model, as a proper model selection has not been carried out due to time constraints.

Therefore, it could be unclear whether subsequent improvements w.r.t. those numbers

will be caused by the model selection itself or by the actual improvement of a particular

architecture over others.
7https://github.com/diningphil/PyDGN.

https://github.com/diningphil/PyDGN
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3.4 Application to Molecular Biosciences [10]

Now that we have discussed the building blocks of deep learning for graphs as well as

our attempt to tackle some of its scholarship issues, we shall provide an example of a

practical application from the field of molecular biosciences [10], more specifically related

to molecular dynamics.

Molecular dynamics simulations [200, 201] are a very useful tool when it comes to in-

vestigate properties of matter. Classical all-atom simulations have allowed researchers

to ultimately understand a large variety of physical systems, from metals and fluids to

biological entities like proteins. As these systems grow larger, the computational costs

and the intuitive understanding of the systems’ behavior become increasingly challeng-

ing. In the soft and biological matter field, coarse-graining methods provide ways to

extract relevant properties of a macro-molecular system [202–205]. To do so, the sys-

tem is first “simplified” into a higher-level representation where the constituent units are

called coarse-grained sites.

Defining a coarse-grained representation requires two things: first, a mapping from the

units of the original system to the coarse-grained sites; second, the set of effective inter-

actions between the sites, so that we can reproduce a posteriori the emergent properties

of the original system through this simplified representation. Figure 3.10 depicts one such

example. While there has been a substantial research effort in defining coarse-grained

potentials [206–208], the study of the mapping itself has been less investigated. Sites are

often selected on the basis of chemical or physical criteria that do not take into account

the local and global environment of each constituent in the original system [209].

Nevertheless, this approach has an evident limitation: any coarse-grained process implies

some degree of information loss, so it would be appropriate to automatically find the

Figure 3.10: Comparing an all-atom system (a protein, left) with one of its possible
coarse-grained representations (right). Purple vertices are coarse-grained sites.
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mapping that minimizes the loss of information about the system’s overall behavior.

There have been attempts to solve via graph-theoretical analyses [210], geometric criteria

[211] and machine learning [212–214]. The underlying idea of all these work is that the

optimal coarse-grained representation can be found in a subset of the original features.

In addition, there are statistical mechanics-based strategies that address the issue by

means of minimization of the so-called mapping entropy Smap [215], a measure of the

dissimilarity between the probability density of the original configuration and that of the

lower-resolution description. [208, 216–218].

The main shortcomings of mapping entropy minimization are the costs of computing

the Smap of a single coarse-grained representation as well the combinatorial size of the

search space. Therefore, in this section, we propose to train a Deep Graph Network that

predicts the mapping entropy associated with a specific coarse-grained representation of

a given protein. If we managed to achieve good performances, we could incorporate the

much more efficient DGN into the Wang-Landau enhanced sampling algorithm [219–222]

so as to carry out a quasi-exhaustive exploration of a biomolecule’s mapping space.

3.4.1 Datasets

The evaluation focuses on two proteins called 6d93 and 4ake, extracted from [215]. The

former is a mutant of tamapin, a toxin of the Indian red scorpion, whereas the latter is

the open conformation of the adenylate kinase, an enzyme inside the cell. A schematic

representation of both proteins is shown in Figure 3.11. The task is a regression problem

in which, given a protein and a specific choice for the mapping, we need to predict the

associated mapping entropy. To build the dataset, we first represent each protein as a

graph, where vertices encode heavy atoms and edges connect pairs of atoms whose atomic

distance is closer than 1nm in the reference structure. We incorporate a number of binary

properties into each vertex’s features, which are described in Table 3.10, whereas edge

features consist of a single continuous value encoding the inverse atomic distance. A

schematic representation of a protein as a graph, with different mappings and therefore

Smap values, is shown in Figure 3.12

The samples in the dataset are constructed by taking the same graph representation

of the protein and changing the binary attribute “Site” depending on the coarse-grained

configuration we want to represent. If an atom is selected as a site, then the attribute

is set to 1 and 0 otherwise. Note that we retain the atoms that are not selected by the

coarse-grained configuration: the underlying idea is to make the DGN learn the relation

between the sites’ position in the protein and the mapping entropy value. To find a good

estimate for the target value, we carried out expensive all-atom simulations on these
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Feature name Description
C Carbon atom
N Nitrogen atom
O Oxygen atom
S Sulphur atom
HPhob Part of a hydrophobic residue
Amph Part of a amphipathic residue
Pol Part of a polar residue
Ch Part of a charged residue
Bkb Part of the protein backbone
Site Atom selected as a CG site

Table 3.10: A list of the binary features used to describe the properties of each atom
in the protein representation.

Protein CPU time Walltime Single measure
6d93 40.7 days 2.55 days ' 2.1 mins
4ake 153.9 days 3.20 days ' 8.0 mins

Table 3.11: Computational costs of all-atom simulations and mapping entropy calcu-
lations for the two investigated proteins. CPU time (respectively Walltime) represents
the time (user time) necessary to simulate 200ns. Single measure is the amount of time

that is required to compute, on a single core, the Smap of a given mapping.

proteins. We ended up with 4968 and 1968 labeled samples, and we summarize other

dataset statistics in Table 3.12. The distribution of the target values for both datasets

is such that there is negligible overlap between the random and optimized8 mappings,

meaning that the best Smap values cannot be reached by a mere random exploration of
8Using a simulated annealing approach [215].

Figure 3.11: The tamapin, a.k.a. 6d93, and the open conformation of adenylate
kinase, a.k.a. 4ake. Though smaller, 6d93 possesses all the elements of proteins’
secondary structures. On the other hand, 4ake is larger and has has a much wider

structural variability.
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Smap Smap′

M M ′

Figure 3.12: Each protein is converted to a graph, where vertices hold atomic features
and the “site” information (in red). For the same protein and different mappings, we

seek to predict the corresponding mapping entropies.

the mapping space. Moreover, the mapping entropy is proportional to the system’s size,

as the lower bound in mapping entropy of 4ake (≈ 90) is almost one order of magnitude

higher than that of 6d93 (≈ 10). Computationally speaking, Table 3.11 reports that the

mapping entropy calculations of a single coarse-grained configuration can take up to 8

minutes for the larger protein 4ake.

Protein Vertices Edges Avg. Degree Dataset Size
6d93 230 21474 93 4968
4ake 1656 207618 125 1968

Table 3.12: Dataset statistics.

3.4.2 Experimental Setting

We experiment with a structure-agnostic baseline like the one introduced in Section 3.3

for social tasks and an edge-aware DGN. The neighborhood aggregation extends that of

[109] as follows:

h`+1
v = MLP `

((
1 + ε`

)
∗ h`v +

∑
u∈Nv

h`v ∗ auv
)
,

where ∗ denotes element-wise scalar multiplication, ε` ∈ R is an adaptive weight of the

model, and auv is the inverse atomic distance between atoms. Practically speaking, we

want to penalize the contribution of neighbors that are farther away according to the

protein topology. Then, we apply a site-aware readout function that learns to weight the
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contribution of site (ws) and non-site (wn) atoms belonging to the disjoint sets Vsg ⊂ Vg
and Vsg ⊂ Vg:

Ŝmap = wT
out

( ∑
u∈Vsg

(
[h1
u, . . . ,h

L
u ] ∗ ws

)
+
∑
u∈Vng

(
[h1
u, . . . ,h

L
u ] ∗ wn

))
,

where L is the chosen number of layers, wout ∈ RK∗L is a vector of parameters to be

learned, and square brackets denote concatenation of the different vertex states computed

at different layers.

To assess the performance of each model, we first split the dataset into training, valida-

tion and test realisations, following an 80%/10%/10% hold-out strategy. During model

selection. we applied early stopping to select the training epoch with the best validation

score, and the chosen model was evaluated on the unseen test set. The evaluation metric

for our regression problem is the coefficient of determination (or R2-score); this score

ranges from −∞ (worst predictor) to 1 (best predictor).

For the purpose of this application, and due to the computational costs necessary to

train a DGN on these datasets, we opted for selecting the hyper-parameters via a manual

experimental screening on the validation set performances. Eventually, we chose a DGN

depth of L = 5, and we implemented eachMLP as a one-layer feed-forward network with

K = 64 hidden units followed by an element-wise rectifier linear unit (ReLU) activation

function [223]. The loss function was the Mean Absolute Error (MAE). The optimization

algorithm was Adam [224] with a learning rate of 0.001 and no regularization. We trained

for a maximum of 10000 epochs with early stopping patience of 1000 epochs and mini-

batch size 8, accelerating the training using a GPU with 16GB of memory. Instead, we

chose K = 1024 hidden units for the baseline while keeping the rest unchanged.

The subsequent exploration of the mapping space is carried out with the Wang-Landau

sampling scheme. The parameters governing the sampler are the result of previous studies

and expert knowledge [215], and they do not influence the training of the DGN. Therefore,

in the interest of readability, we refer the reader to [10] for a thorough description of the

whole sampling process as well as the dataset-specific parameters used to explore the

mapping space.9

3.4.3 Results

We start by looking at the prediction performances of the aforementioned models. Table

3.13 reports the R2 score and MAE in training, validation and test. While the baseline
9https://github.com/CIML-VARIAMOLS/GRAWL.

https://github.com/CIML-VARIAMOLS/GRAWL
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provides a surprisingly high score on 6d93, we also observe that the DGN has much

better performances on both datasets. Indeed, it achieves extremely low values of MAE

for 6d93, with an R2 score higher than 0.95 in all cases. The model performs slightly

worse in the case of 4ake: the result of R2 = 0.84 on the test set is still acceptable,

although the gap with the training set (R2 = 0.92) is non-negligible.

Model / Protein TR MAE TR R2 VL MAE VL R2 TE MAE TE R2

Baseline / 6d93 0.55 0.86 0.63 0.83 0.65 0.82
DGN / 6d93 0.13 0.99 0.33 0.95 0.33 0.96
Baseline / 4ake 1.78 0.70 1.75 0.65 1.86 0.69
DGN / 4ake 0.91 0.92 1.2 0.85 1.35 0.84

Table 3.13: Mapping entropy prediction results on the training (TR), validation (VL)
and test (TE) sets for the two analysed proteins. We display both the R2 score and the

mean average error (MAE, kJ/mol/K).

In Figure 3.13, we plot predicted values for training and test samples against their ground

truth. Ideally, a perfect result would correspond to the points lying on the diagonal dotted

line. As regards 6d93, we can get pretty close to the true training and test targets. The

deviation from the perfect fit becomes wider for 4ake, but there are no relevant outliers to

report, a good sign of the DGN’s generalization performances. By closely inspecting the

4ake scatter plot, we observe that the DGN slightly overestimates the mapping entropy

of optimized coarse-grained samples, i.e., Smap . 100 kJ/mol/K. Likewise, the opposite

is true for Smap & 100 kJ/mol/K, with random coarse-grained mappings being slightly

underestimated.
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Figure 3.13: Scatter plot of predictions against the ground truth for both datasets.

The dissimilarity in performance between the two proteins is not surprising, given expert

knowledge about their nature. In fact, we already mentioned how adenylate kinase is

larger and more complex than the tamapin mutant. The datasets sizes are necessarily
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very different due to the heavy computational requirements to label 4ake samples. It is

then natural to expect that training a model with excellent generalization performance

on 4ake would be harder than the other task. We would like to emphasize, however,

that a completely adaptive DGN was able to approximate, in both structures, the long

and computationally intensive algorithm for estimating the mapping entropy [215]. Even

more significant is the fact that the model relies on a combination of static structural

information and a few simple vertex features. In other words, the DGN operates in the

absence of direct knowledge about the complex dynamical behavior of the two systems,

in contrast to the onerous molecular dynamics simulations.

To confirm that the DGN provides a computational advantage with respect to the sim-

ulations, we report in Table 3.14 the time required to predict a single Smap output and

compare it to the ground truth algorithm. To provide a fair comparison between the

algorithm of [215], which relies on a CPU machine, we compute prediction times on both

CPU and GPU. Overall, we can see that the DGN inference phase is 2 − 5 orders of

magnitude faster than the original algorithm, depending on the hardware used. Notably,

the speedup is associated with a fairly good predictive accuracy of the machine learning

model. To sum up, such drastic speedup of the trained model allows us to carry out a

much wider exploration of the Smap landscape of both protein systems.

Protein Single measure Inference GPU (CPU) Improvement GPU (CPU)
6d93 ' 2.1 mins ' 0.9(98.7) ms ' 140000× (1276×)
4ake ' 8.0 mins ' 4.8(1103.2) ms ' 100000× (435×)

Table 3.14: Time comparison between the original mapping entropy algorithm and
the inference phase of the DGN.

If we embed the trained DGN in the Wang-Landau sampler, we can better approximate

the distribution of the mapping entropy values for 6d93 and 4ake. Put differently, we can

better estimate how many coarse-grained representations (sampled from the mapping

space of each protein) exhibit a specific amount of information loss with respect to

the all-atom system. To reach convergence of the sampling protocol, we had to probe

approximately 4.8× 106 and 3× 107 different mappings for 6d93 and 4ake, respectively.

Clearly, such an extensive sampling was made feasible by the speedup attained by the

proposed DGN.

The distributions P (Smap) of both 6d93 and 4ake are shown in Figure 3.14. In the former

case, the sampling scheme produces a probability density that is fully compatible with

the (normalized) histograms of the target values. Also, notice that the statistical weight
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of the optimized mappings here is negligible, but nonetheless this result is definitely non-

trivial, as it proves that the trained DGN of 6d93 is not in an overfitting regime and can

predict the correct population of the true mapping entropy landscape.

As regards 4ake, the agreement between the two curves presented is still remarkable

but not as precise as before. The slight mismatch is understandable if we consider the

above regression scores: the DGN tends to underestimate (respecrively overestimate) the

mapping entropy associated with random (optimized) coarse-grained representations.

Figure 3.14: Comparing probability densities P (Smap) for the two proteins. The
smooth distribution produced by the DGN (green lines) is similar to that generated by
a random sampling of mappings (blue areas). Smap values are in kJ/mol/K. WL here

stands for Wang-Landau.
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3.5 Summary

In this chapter, we have described the basic building blocks of deep learning methodolo-

gies able to learn from graph-structured data. In doing so, we managed to define different

methods under the same uniform mathematical notation, so that we could easily under-

stand peculiarities among the most popular neighborhood aggregation mechanisms in

the literature as well as their nature [1, 41]. In turn, this also highlighted how the main

underlying mechanisms had been already there for more than 10 years, in spite of the

recent wave of re-discovery caused by the growing interest in the field. However, such

an incredibly rapid stream of publications lacked a standardized, fair and robust exper-

imental procedure in both vertex [177] and graph classification tasks, so we provided an

empirical re-evaluation of some of the most known works across a substantial number

of benchmarks [5]. To convince the reader that these approaches are truly useful when

applied to real-world problems, an application to the field of molecular biosciences was

presented, in which we demonstrated how we can study a molecular system by quickly

finding solutions with minimum mapping entropy [10].

It is now time to move to the core topics of this thesis. We shall be dealing with a deep,

fully probabilistic framework to learn from graphs with varying topology. We will use

the knowledge acquired in the previous chapters to simplify the exposition and focus

on the technical details that position such framework into the family of Deep Bayesian

Graph Networks.



Chapter 4

Deep Bayesian Graph Networks

Lo mio maestro allora in su la gota
destra si volse indietro, e riguardommi;
poi disse: «Bene ascolta chi la nota».

Inferno - Canto XV

Deep Bayesian Graph Networks are fully probabilistic models for graphs whose architec-

ture implements the principles of local and iterative computation described in the previ-

ous chapter. We will commence the discussion with the Contextual Graph Markov Model

(CGMM), a model bridging the gap between the NN4G [107] and the recursive Bottom-

up Hidden Tree Markov Model [225]. We shall show how the neighborhood aggregation

can be formalized and handled in a deep Bayesian framework, and we will evaluate its ef-

fectiveness on vertex and graph classification tasks. Then, we will extend CGMM to the

processing of arbitrary edge features. The resulting model, called Extended CGMM (E-

CGMM), uses an additional Bayesian network to model the generation of edge features,

and its functioning is deeply intertwined with the original CGMM’s graphical model.

E-CGMM exhibits a form of dynamic neighborhood aggregation that contributes to the

better performances of the model on graph classification, graph regression, and link pre-

diction tasks. The third and last methodological contribution is the Infinite Contextual

Graph Markov Model (iCGMM), which extends CGMM to the Bayesian nonparametric

setting using an HDP. iCGMM is capable of automatically selecting, on the basis of the

available data, almost all CGMM’s hyper-parameters, including the number of latent

states at each layer. Empirically, we will bring evidence that iCGMM has comparable

or better performances than the original model while drastically reducing the size of

the graph embeddings. We conclude the chapter with a real-world malware detection

application that exploits the above models.

84
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4.1 The Contextual Graph Markov Model [6, 7]

The core contributions of this thesis, which we are about to present, are inspired by

both the probabilistic topics of Chapter 2 and the underlying principles of Deep Graph

Networks developed in Chapter 3. For the rest of the chapter, we shall therefore depart

from purely neural architectures and focus on a novel probabilistic framework to learn

representations of graphs or vertices.

This section is devoted to the introduction of the Contextual Graph Markov Model

(CGMM) [6, 7]. As in the previous chapter, we shall adopt a top-down approach and

first list the four main characteristics of the Tenc mapping:

• Unsupervised. The model relies on the maximization of an unsupervised learning

criterion, that is, the likelihood of the graph’s entities, to adjust its parameters and

construct vertex/graph embeddings. In principle, this means that the model can

exploit large amounts of unlabelled data to produce richer vertex/graph embed-

dings on a given domain.

• Fully Probabilistic. Contrarily to other methods, which formalize the learning

objective in probabilistic terms but approximate probability distributions with neu-

ral networks [60], CGMM relies on Bayesian networks to capture the latent factors

of vertex features. This makes CGMM a fully probabilistic model and requires, as

we will see, a completely probabilistic formulation of the neighborhood aggregation

previously discussed.

• Deep (Constructive). Following the principles of Deep Graph Networks, CGMM

is a deep feedforward architecture, where each layer is a distinct Bayesian network.

This is enough to distinguish CGMM from SRL approaches or recursive Bayesian

networks for trees [118, 122, 129], where the structure is taken into account in

the formalization of the probabilistic model rather than by the message passing

scheme of DGNs. In addition, and similarly to NN4G [107], the model is built in

a constructive fashion by training one layer at a time. Once a CGMM layer has

been trained, it is frozen and never modified again.

• Efficient. Last but not least, the model has the same asymptotic complexity as

most DNGNs, being linear in the number of edge. Therefore, the model is amenable

to large scale graph processing.

These characteristics make CGMM a rather peculiar approach in the landscape of Deep

Graph Networks. To show the richness of the extracted graph embeddings, we will use

them in combination with a neural readout to tackle vertex and graph classification tasks.
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4.1.1 Layer Definition

We have already seen how each layer ` of a DGN is responsible for the creation of

intermediate vertex representations h`+1
u . Likewise, each CGMM’s probabilistic layer

assumes that the generation of vertex’ features xu depends on some latent factor that

we would like to capture. Hereinafter, for the purposes of this thesis, we will assume to

deal with a single discrete or continuous feature xu.

Layer `

Q`−1
|Nu|Q`−1

2Q`−1
1

Xu

Qu

. . .

u ∈ Vg
g ∈ D

Figure 4.1: Graphical model of a generic layer ` of CGMM. Dashed arrows denote
the flow of contextual information coming from previous layers.

We present the Bayesian network of a generic CGMM layer ` in Figure 4.1. This is a

conditional mixture model where we formally associate each vertex feature with an

observable variable Xu, whose adaptive emission distribution P (Xu | Qu) is condi-

tioned on the latent categorical variable Qu with C attainable values.

Intuitively, the latent variable Qu plays the role of the hidden state h`+1
u in the gen-

eral formulation devised in the previous chapter; that said, we follow the notational

convention of Chapter 2 when referring to random variables.

At first, it may seem that a strong assumption has been imposed here, i.e., all vertices

are i.i.d.. In other words, we are completely disregarding the structural dependency

between the set {Xu | u ∈ Vg} of variables. However, having already outlined the basic

principles of Deep Graph Networks, it should be clearer why this assumption works

well: structural information has been encoded into the neighboring observable variables

Q`−1
Nu = {Q`−1

1 , . . . , Q`−1
|Nu|
} computed at the previous layer. This is why, with slight abuse

of notation, dashed arrows in the figure indicate that there is contextual information
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flowing from the previous (frozen) layer `− 1. We will also use the symbol q`−1
v to refer

to the categorical distribution over the C states (i.e., a vector) inferred for the latent

variable Q`−1
v when training the previous layer. In addition, the j-th component of such

distribution shall be q`−1
v (j).

Formally, we can define the likelihood of a graph g at layer ` as

L(θ | g) = P (g | θ) =
∏
u∈Vg

C∑
i=1

Pθ(Xu = xu|Qu = i)︸ ︷︷ ︸
emission

P (Qu = i | Q`−1
Nu ). (4.1)

As in standard mixture models, we have introduced the latent variable Qu in the equation

via marginalization. However, not knowing the size of Nu for each vertex u makes

the definition of the posterior distribution P (Qu = i | Q`−1
Nu ) quite hard to formalize,

and conditioning on all neighboring states becomes rapidly intractable because of the

exponential growth in the number of possible combinations (i.e., O(C |Nu|)). What is

worse, the cardinality of the neighbors may vary, so either we assume a maximum size of

all neighbors’ sets or we rely on permutation invariant functions like DGNs do. We opt

for the latter option and weigh the contributions of the neighboring states equally using

the mean operator:

P (Qu = i | Q`−1
Nu ) ≈ 1

|Nu|
C∑
j

Pθ(Qu = i | Q`−1
∗ = j)︸ ︷︷ ︸

transition

∑
v∈Nu

q`−1
v (j). (4.2)

We can intuitively understand the last equation by imagining that all neighboring vari-

ables have been collapsed into a “macro-variable” Q`−1
∗ , whose categorical distribution

is given by the element-wise mean of the individual distributions (viewed as C-sized

vectors), i.e., the probability of Q`−1
∗ being in state j is 1

|Nu|
∑

v∈Nu q
`−1
v (j).

While it is true that each neighbor is weighted equally (i.e., the 1
|Nu|

term), the adaptive

transition distribution weights the contribution of any neighboring state differently

according to the arrival state i. Crucially, since we assume full stationarity of all

adaptive distributions, the identities of a neighbor or the vertex itself are irrelevant to

the parametrization of such distributions.

Another peculiar characteristic of this aggregation is that we do not necessarily weight

the most likely state of each neighboring variable Q`−1
∗ , but rather we consider the entire

probability mass specified in the distribution q`−1
v : Section 4.1.4 will provide more details

about this point.



88

4.1.2 Enhancing the Neighborhood Aggregation

The neighborhood aggregation scheme presented above ensures that the rightmost term

of Equation 4.1 is still a valid probability, thus allowing us to find closed-form solutions

when training the layer with the exact EM algorithm (details are provided later). How-

ever, this aggregation is limited in two respects: first, it does not take into account more

than one previous layer, similarly to what skip connections do in deep neural networks

[70, 107, 226]; secondly, it ignores the presence of edge features. Inspired by bottom-

up generative models for tree-structure data [118, 129], we address these limitations by

means of the so-called Switching Parent (SP) approximation [118, 227].

The goal is to modify the above equations to consider contributions from an arbitrary

subset L(`) of previous layers as well as a finite number of discrete edge labels; to this

aim, we introduce the random categorical variables Lu and Su, respectively. Mathemat-

ically, the role of a Switching Parent variable Ξ is to decompose a complex conditional

distribution over variables (let us call them I) into a convex combination of simpler ones

P (I0 = i0|I1 = i1, . . . , Ik = ik) ≈
k∑
ξ=1

P (Ξ = ξ)P ξ(I0 = i0|Iξ = iξ),

where the rightmost transition probability depends on the value ξ of the SP variable.

The finite cardinality of the sets L(`) and Ag makes it possible to apply the SP approxi-

mation to our CGMM layer. The SP technique will first assign a specific weight to frozen

neighboring states computed at different layers. In addition, for each layer, neighbors

of vertex u connected with diverse edge types will be weighted differently as well. If

we go back to the “macro-state” idealization, this corresponds to grouping neighboring

variables into many macro-states, according to their relation with the previous layers and

edge types. We give a graphical overview of the extended probabilistic layer in Figure

4.2

Hence, we can see Equation 4.2 as a special case of the following neighborhood aggrega-

tion (considering the extended set of neighboring observables QL(`)
Nu ):

P (Qu = i | QL(`)
Nu ) ≈

∑
`′∈L(`)

Pθ(Lu = `′)︸ ︷︷ ︸
SP layer

|Ag |∑
a=1

P `
′
θ (Su = a)︸ ︷︷ ︸
SP edge

×

× 1

|N `′,a
u |

C∑
j

P `
′,a
θ (Qu = i | Q`′,a∗ = j)︸ ︷︷ ︸

SP-aware transition

∑
v∈N `

′,a
u

q`
′
v (j), (4.3)
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Qu

Su

Xu

Q1
1 Q1

2 Q`−1
|Nu|Q`−1

2Q`−1
1

Q1
|Nu|. . . . . . . . .

Layer `

Lu

u ∈ Vg
g ∈ D

Figure 4.2: Graphical model of the “full” CGMM at layer `. The SP variables weight
the frozen neighboring states in relation to their layer and edge type. Dashed arrows

denote the flow of contextual information coming from previous layers.

where N `′,a
u = N a

u defines the subset of neighboring observables computed at layer `′,

whose associated vertices are connected to u with edge label a. Notice how we have

adopted positional stationarity for the transition distribution and the switching par-

ent Su: the distributions are dependent on the layer and edge type we are considering.

Similarly, the variable Q`
′,a
∗ identifies the macro-state obtained by averaging the neigh-

boring contributions in N a
u .

Computationally speaking, each term 1
|Nau |

q`
′
v (j) is constant and can be pre-computed

before training the current CGMM layer. Thanks to the incremental construction, this

can substantially speed up the training process. From now on, when needed, we will talk

about “pre-computed statistics” or simply statistics.

The Switching Parent approximation fits well inside the CGMM layer because it does not

require reasoning about all layers simultaneously. Different approaches, such as Recurrent

Neural Networks or Hidden Markov Models, assume that the “history” of states is not

frozen and can change altogether through a shared transition function across layers. This

design choice, however, would reintroduce the mutual dependencies between unobserved

variables that we are trying to break with the incremental construction or, more generally,

with the local and iterative processing of information described in Chapter 3. Thus,

the SP variables provide a formal way to consider “skip connections” and discrete edge

features in a probabilistic framework.
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To summarize, the likelihood of a graph under the extended formulation of CGMM can

be therefore written as

L(θ | g) =
∏
u∈Vg

C∑
i=1

Pθ(Xu = xu|Qu = i)P (Qu = i | QL(`)
Nu ) ≈

≈
∏
u∈Vg

C∑
i=1

Pθ(Xu = xu|Qu = i)︸ ︷︷ ︸
emission

∑
`′∈L(`)

Pθ(Lu = `′)︸ ︷︷ ︸
SP layer

|Ag |∑
a=1

P `
′
θ (Su = a)︸ ︷︷ ︸
SP edge

×

× 1

|N a
u |

C∑
j

P `
′,a
θ (Qu = i | Q`′,a∗ = j)︸ ︷︷ ︸

SP-aware transition

∑
v∈Nau

q`
′
v (j). (4.4)

4.1.3 Training

When training the `-th layer of CGMM, we maximize the likelihood of the data using

the EM algorithm, by assuming that the graphs in the dataset D are i.i.d.. Similarly

to the standard mixture model training, to compute the E-step we introduce the set

of indicator random variables Z. In particular, Zui`′aj = 1 if the latent variable Qu of

vertex u has value i while its observable neighboring variables coming from layer `′ are

in state j and are connected to u with edge type a, and 0 otherwise. Note that there can

also be other indicator variables, e.g., Zui`′a, where we express no interest in knowing

the value of one or more subscripts of Zui`′aj . Using knowledge coming from Z, we can

write the complete log-likelihood formula to be maximized (omitting θ to simplify the

notation):

logLc(θ | Z,D) = log
∏
g∈D
u∈Vg

C∏
i

{
P (xu|Qu = i)

∏
`′∈L(`)

{
P (Lu = `′)

|Ag |∏
a=1

{
P `
′
(Su = a)×

×
C∏
j

{P `′,a(Qu = i|Q`′,a∗ = j)
∑

v∈Nau q
`′
v (j)

|N a
u |

}Zui`′aj}Zui`′a}Zui`′}Zui

=
∑
g∈D
u∈Vg

C∑
i

Zui logP (xu|Qu = i) +
∑
g∈D
u∈Vg

C∑
i

∑
`′∈L(`)

Zui`′ logP (Lu = `′)

+
∑
g∈D
u∈Vg

C∑
i

∑
`′∈L(`)

|Ag |∑
a=1

Zui`′a logP `
′
(Su = a)

+
∑
g∈D
u∈Vg

C∑
i

∑
`′∈L(`)

|Ag |∑
a=1

C∑
j

Zui`′aj log
P `
′,a(Qu = i|Q`′,a∗ = j)

∑
v∈Nau q

`′
v (j)

|N a
u |

.

(4.5)
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At layer ` = 0, since there are no neighboring states to consider, the problem reduces to

maximizing the complete log-likelihood of a standard mixture model (Section 2.1.2).

E-step

The E-step of the EM algorithm requires to compute the expectation of the complete

log-likelihood w.r.t. Z. Thanks to the properties of expectation, this is equivalent to re-

place each indicator variable in Equation 4.5 with its conditional expectation. Therefore,

we define the following terms:

E[Zui|D,QL(`)
Nu ] = P (Qu = i|D,QL(`)

Nu )

E[Zui`′ |D,QL(`)
Nu ] = P (Qu = i, Lu = `′|D,QL(`)

Nu )

E[Zui`′a|D,QL(`)
Nu ] = P (Qu = i, Lu = `′, Su = a|D,QL(`)

Nu )

E[Zui`′aj |D,QL(`)
Nu ] = P (Qu = i, Lu = `′, Su = a,Ku = j|D,QL(`)

Nu ),

noting that the first three terms can be straightforwardly obtained from the last one via

marginalization. To formally model the aggregation process, we had to introduce the

“macro-state” categorical variable Ku with C possible values, such that P `′,a(Ku = j) =∑
v∈Nau q

`′
v (j)/|N a

u |. Consequently, we can apply the Bayes Theorem on E[Zui`′aj |D,QL(`)
Nu ],

yielding

E[Zui`′aj |D,QL(`)
Nu ] = P (Qu = i, Lu = `′, Su = a,Ku = j|D,QL(`)

Nu )

=
P (xu|Qu = i)P (Qu = i, Lu = `′, Su = a,Ku = j|QL(`)

Nu )

P (xu|QL(`)
Nu )

=
P (xu|i)P (i|Lu = `′, Su = a,Ku = j,Q

L(`)
Nu )P (Lu = `′)P `

′
(Su = a)P `

′,a(Ku = j)

Znorm

=
P (xu|Qu = i)P `

′,a(Qu = i|Q`′,a∗ = j)P (Lu = `′)P `
′
(Su = a)P `

′,a(Ku = j)

Znorm

=
P (xu|Qu = i)P (Lu = `′)P `

′
(Su = a)P `

′,a(Q = i|Q`′,a∗ = j)P `
′,a(Ku = j)

Znorm
,

where Znorm is the normalization term, obtained by P (xu|QL(`)
Nu ) via marginalization

over all the latent variables (including Ku).

As we can see, the E-step can be computed without relying on variational approximations.

Also, these operations can be easily parallelized due to the i.i.d.assumption between

vertices, making the training of each layer scalable to larger graphs and amenable to

GPU processing.
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M-step

We use the posterior probabilities obtained in the E-step to update the parameters of the

CGMM layer. After the addition of a suitable Lagrange multiplier to enforce probability

requirements, we can obtain closed-form solutions for each adaptive distribution Pθ in

the following way [7]:

1. Compute the gradient of the expected complete log-likelihood w.r.t. Pθ. The

resulting equation will depend on the Lagrange multiplier;

2. Compute the gradient of the expected complete log-likelihood w.r.t. the Lagrange

multiplier, and plug the result into the resulting equation of the previous point.

We end up with the following update equations (omitting the subscript u to express

stationarity of the learned distributions):

Transition Distribution

P `
′,a(Q = i|Q`′,a∗ = j) =

∑
g∈D
u∈Vg

E[zui`′aj |D,QL(`)
Nu ]∑

g∈D
u∈Vg

∑C
i′=1 E[zui′`′aj |D,QL(`)

Nu ]
.

Switching Parents Distributions

P (L = `′) =

∑
g∈D
u∈Vg

∑C
i=1 E[zui`′ |D,QL(`)

Nu ]∑
g∈D
u∈Vg

∑C
i=1

∑
`′′∈L(`) E[zui`′′ |D,QL(`)

Nu ]
,

P `
′
(S = a) =

∑
g∈D
u∈Vg

∑C
i E[zui`′a|D,QL(`)

Nu ]∑
g∈D
u∈Vg

∑C
i

∑|Ag |
a′=1 E[zui`′a′ |D,QL(`)

Nu ]
.

Categorical Emission Distribution

P (X = k|Q = i) =

∑
g∈D
u∈Vg

δ(xu, k)E[zui|D,QL(`)
Nu ]∑

g∈D
u∈Vg

∑K
k′ δ(xu, k

′)E[zui|D,QL(`)
Nu ]

.
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Gaussian Emission Distribution

µi =

∑
g∈D
u∈Vg

xuE[zui|D,QL(`)
Nu ]∑

g∈D
u∈Vg

E[zui|D,QL(`)
Nu ]

,

σi =

√√√√√√√
∑

g∈D
u∈Vg

E[zui|D,QL(`)
Nu ](xu − µi)2

∑
g∈D
u∈Vg

E[zui|D,QL(`)
Nu ]

.

As already mentioned, for the purposes of this thesis we will mainly focus on categorical

and univariate Gaussian emission distributions. For multidimensional features, one could

simply assume their conditional independence or rely on the vast amount of literature

available [12, 13].

4.1.4 Inference

During inference, we compute the most likely index associated with the posterior of Qu
as representative for vertex u. In other words, it assigns u to one of the C potential

clusters. Formally, this can be expressed as

max
i
P (Qu = i|g,QL(`)

Nu ) = max
i

P (xu|Qu = i)P (Qu = i|QL(`)
Nu )

������
P (xu|QL(`)

Nu )
. (4.6)

The equivalence is obtained by straightforward application of the Bayes Theorem; more-

over, the denominator does not contribute to the maximization because it is independent

of the state i, so it can be ignored.

Mathematically speaking, when training a CGMM layer, we formalized the neighborhood

aggregation using the entire frozen posterior distribution of each vertex rather than its

most likely state. Note, however, that our formalization is general enough to allow the

use of either the former (continuous) representation or its one-hot variant, i.e., collapsing

all probability mass into the most likely state.

To understand why this matters, let us assume C = 3 and consider the frozen posterior

distribution of a vertex inferred at the previous layer being (0.4, 0, 0.6) or (0, 0.4, 0.6).

Clearly, collapsing all the posterior mass onto the most likely state discards important

information about the probability of being in the others. Therefore, there is a trade-off

between a less noisy but approximate one-hot representation and a possibly noisy but

exact one. We treat this choice as a hyper-parameter to be selected.
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4.1.5 Building Graph Representations

After training CGMM for L layers, we can finally build a graph representation. Figure

4.3 schematizes the two-step process for L = 2. First of all, inferred vertex representa-

tions from all layers are concatenated into |Vg| vectors of size C×L; concatenation is the

most conservative choice when one wants to prevent loss of information. After that, these

vectors are aggregated to obtain the final graph fingerprint, and we treat the choice of the

permutation invariant function as a hyper-parameter. Indeed, it is reasonable to assume

that the best choice is task-dependent; for instance, the mean aggregation abstracts from

the size of a graph and focuses on variations in vertex distributions, whereas the sum

encodes the most prevalent features in the vertex embedding space. To simplify our anal-

ysis, save computational resources, and generate task-agnostic graph representations, we

do not incorporate adaptive aggregation functions in the process.

|Vg| × C

Layer 1

Layer 2

concatenate
|Vg| × 2C

aggregate
1× 2C

hg

Figure 4.3: Example of a graph embedding construction for a 2-layer CGMM. Each
layer outputs a representation of size C for each vertex u ∈ Vg. After a concatenation
step, vertex representations (of size 2C) are aggregated into a graph embedding. The

choice of the aggregation function, e.g., sum or mean, influences the final result.

4.1.6 Trade-offs of Vertex Representations

The C − sized representation of a vertex at layer ` is also called a unigram. While

this is the most straightforward way to obtain a vertex embedding, we can still build

structure-aware representations called bigrams. A bigram is a C2-sized vector which

reflects how neighbors of a vertex are distributed. Formally, the bigram Φ(u) [228] of a

vertex u is defined as

Φij (u) =
∑

v∈N (u)

qu(i)qv(j), i, j ∈ 1, . . . , C.

To increase the richness of vertex and graph representations, whenever a bigram is used

we concatenate it with its corresponding unigram, thus obtaining a unibigram. Here

we have another trade-off to consider: unigrams are clearly less expensive to compute

and store, but unibigrams carry more information.
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4.1.7 Complexity and Scalability

Thanks to CGMM’s architectural flexibility, the cost of training each layer ranges from

constant (e.g., L(`) = {`− 1}) to depth-specific (e.g., L(`) = {1, . . . , `− 1}). Time

and space complexity of a training epoch on a single graph are bounded by the cost

of computing the E-step, which is O(|Vg|(|L(`)|C2 + KC)), where K stands for the

number of vertex features. Instead, computing the statistics after training one layer

has time complexity O(|Eg|) because we just need to access the structure. The overall

computation is therefore bounded by the sum of these two asymptotic terms that can be

written as O(|VD|+ |ED|).

Similarly to DNGNs, the i.i.d assumption on vertices allows to easily implement mini-

batch training, with which we can arbitrarily reduce the memory fingerprint at run-time;

this is especially important in hardware-constrained scenarios. Also, data parallelism

can be trivially achieved by distributing the epoch’s mini-batches on different CPUs

or clusters of machines. For these reasons, CGMM is a suitable candidate to handle

large-scale graph learning.1

4.1.8 Limitations

Due to the parametrized mean aggregation of neighboring observables, care must be

taken when discriminating between structures with different connectivity but same lo-

cal distributions. Indeed, when the distributions of the neighbourhood’s states of two

vertices are identical, CGMM cannot differentiate between them regardless of their con-

nectivity. We can mitigate this issue by embedding the notion of vertex degree into the

neighborhood aggregation mechanism. To do so, we consider degmax(g), i.e., the maxi-

mum degree of a graph g, and we intuitively connect each vertex u to degmax(g)−deg(u)

dummy neighbors in a special hidden state ⊥ called bottom. To maximize flexibility via

the SP distributions, such dummy neighbors are connected to u with a dedicated edge

type. Practically speaking, this means the statistics QL(`)
Nu will contain information about

vertex u’s degree, and such information is well-separated from the contextual information

thanks to the use of the ⊥ hidden state. Finally, note that we can also encode each vertex

u’s degree into xu and use a Gaussian emission distribution to model its generation.

There are classes of graphs that cannot be distinguished so easily by CGMM, such as k-

regular graphs, that is those such that deg(u) = k ∀u ∈ g. In particular, this is the family

of structures that can be discriminated by the k-dim WL isomorphism test. Recently,

Xu et al. [109] showed that almost all DNGNs are at most as powerful as the 1-dim WL

test, but a similar proof for CGMM will be the subject of future works.
1https://github.com/diningphil/CGMM.

https://github.com/diningphil/CGMM
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Summary

To summarize what we said so far, we detail the pseudo-code of the incremental training

procedure in Algorithm 3, up to the construction of graph representations. In addition,

we visually sketch CGMM’s incremental construction in Figure 4.4.

Algorithm 3 Probabilistic Incremental Training
1: Input: dataset D, maximum number of layers `max and epochs epochmax.
2: Output: dataset of vertex and graph representations
3: for `← 1,. . ., `max do
4: Initialize layer ` according to L(`), |A| and C
5: Load QL(`)

D = {Q`′,a
Nau | `

′ ∈ L(`), a ∈ |Ag|, u ∈ g, g ∈ D}
6: for epoch ← 1,. . ., epochmax do
7: ∆likelihood, posteriors ← E-Step(D,QL(`)

D )
8: M-Step(posteriors)
9: if ∆likelihood < threshold then

10: break;
11: end if
12: end for
13: Q`

D ← Inference(D)
14: Store Q`

D
15: end for
16: RVD ← concatenate({Q`′

D, . . . ,Q
`max
D })

17: RD ← aggregate(RVD)
18: return RVD , RD

Layer 1
Xu

Qu

u ∈ Vg
g ∈ D

Layer 2

Q1
|Nu|Q1

2Q1
1

Xu

Qu

. . .

u ∈ Vg
g ∈ D

Layer `

Q`−1
|Nu|Q`−1

2Q`−1
1

Xu

Qu

. . .

u ∈ Vg
g ∈ D

. . .

Q1
D

1. Train and Freeze
2. Store

Q1
D

Q2
D

1. Train and Freeze
2. Store

Q
L(`)
D Q`

D

1. Train and Freeze
2. Store

Figure 4.4: High-level description of CGMM’s incremental construction, in light of
the description given by Algorithm 3. Each layer is trained individually before being
frozen; after that, statistics are computed and passed to the subsequent layers. The

process can be repeated as many times as desired.
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4.1.9 Experimental Setting

This section reports our experimental findings on some of the common graph classification

benchmarks listed in Section 3.3.2 as well as a vertex classification task. To go more in

depth, we study the effect of layering on performances, carry out ablation studies, and

graphically show an example of context propagation across layers.

Datasets

As regards graph classification, we compare CGMM against PROTEINS, DD, NCI1,

IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-5K, and COLLAB from

Table 3.4: we leave ENZYMES out of the evaluation due its very small size and nature of

the features. The absence of vertex features in the social datasets constitutes a degenerate

case that prevents CGMM from learning, i.e., the neighboring states will always have

the same distributions. As done in [5, 229], when a vertex has no features, we add its

degree as a continuous value as well as the bottom states discussed in Section 4.1.8.

In addition, to test CGMM performance on vertex classification tasks, we use the protein-

protein interaction data set (PPI) introduced in [151]. We have already highlighted the

troubling trends regarding some of the most common vertex classification benchmarks

[177], so we prefer to stick to a dataset which is large and has a well-defined evaluation

protocol. In this task, we are given a set of distinct large graphs, and our goal is to

classify their vertices. Table 4.1 provides some details about the PPI benchmark.

# Graphs Classes # Vertices # Edges # Vertex feat.
PPI 24 121 2372.67 34113.17 50

Table 4.1: Dataset statistics for the PPI vertex classification benchmark. In this task,
we simultaneously have to predict 121 binary labels.

Hyper-parameters and Evaluation Protocol

This section describes the hyper-parameters tested as well as the chosen model assess-

ment and selection procedures. However, for some of the baselines considered, there is

no standardized evaluation protocol to follow such as the one of Section 3.3. For this

reason, in order to compare with kernel methods and other DNGNs, we will report two

experimental setups. The first uses random data splits, whereas the second follows [5]

and provides a more reliable performance comparison. Both setups rely on grid searches.

In Table 4.2, we list the hyper-parameters needed by CGMM and by the subsequent

supervised classifier working on the unsupervised vertex/graph representations. We

achieved constant per-layer complexity by setting |L(`)| = {`− 1}, but we also eval-

uated the impact of considering all previous layers using the SP technique. The number
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of EM epochs is fixed to 10, because the likelihood always stabilized around that value

in our preliminary experiments. We also tried both continuous and one-hot vertex rep-

resentations, and the global aggregation was either sum or mean. For some datasets, the

preliminary experiments revealed that one global aggregation was dramatically better

than the other, so we exploited this fact to reduce the number of combinations to test.

The different configurations of a CGMM’s layer mainly depend on two hyper-parameters

only: the number of hidden states C and the number of layers. We can thus exploit the

incremental nature of our model to further reduce the dimension of the grid search space:

for each value C, we trained a single network for a maximum of L layers and then “cut” it

to obtain the necessary configurations of depth L′ < L. In addition, once the embeddings

of all possible CGMM’s configurations have been computed and stored, we can explore

many combinations for the classifier without having to re-train CGMM every time.

Speaking of classifiers, we considered a logistic regressor and a more flexible alterna-

tive in the form of a one-layer MLP with ReLU activations. Both of them are trained

with Adam [224] and Cross-Entropy loss (Mean Squared Error for PPI). To contrast

overfitting, we introduced L2 regularization and an early stopping technique.

Different setups across models. As anticipated, in the first evaluation setup we

created random (stratified) data splits for the graph classification tasks. We followed a

Double Cross-Validation strategy, with 10 external folds for risk assessment and 5

internal folds for model selection. All the other methodologies are evaluated according to

a 10-fold CV strategy for risk assessment, so overall we expect the results to be roughly

comparable. For an in-depth analysis of these baselines, the reader is referred to [7].

Regarding early stopping, we used the Generalization Loss [196] with α = 5, which is

considered to be a good compromise between training time and performances. In this

respect, Table 4.2 reports the number of epochs after which early stopping starts; at

the beginning of training, the validation loss smoothly oscillated and accuracy did not

steadily increase, we believe stopping too early would have not been beneficial to get

reliable performance estimates. On the contrary, the training/validation/test data splits

of PPI were given, so we chose a simpler holdout approach.

Same setup across models. Here, we took advantage of the evaluation protocol of

Section 3.3 to robustly re-evaluate CGMM against the most popular DNGNs. The only

difference in the hyper-parameters regards the early stopping technique: for simplicity,

we chose to use a simple patience-based stopping criterion, whose values correspond

to those in Table 4.2. Instead, we experimented with the same hyper-parameters of

COLLAB on both REDDIT datasets.
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4.1.10 Results

We now present CGMM’s results on graph and vertex classification, along with empirical

studies on the beneficial effects of depth. These will provide us with additional hints on

CGMM’s ability to extract useful information in an unsupervised fashion. We also

study the impact of the layer-wise SP variable as part of our ablation studies. Finally,

we visualize how the model propagates contextual information across the graph.

Graph Classification

We evaluate the performance of our method against different kernels and deep learning

techniques for graph classification. Table 4.3 provides a comparison between the kernels

considered and CGMM in terms of computational costs. As we can see, some kernels

can be inadequate when it comes to large scale training and inference because of their

(at least) quadratic time complexity in the number of graphs. Moreover, the considered

kernels for graphs are not applicable to continuous vertex features, which limits their

applicability to different domains.

Kernel Cost Reference
GK O(|D|2ndk−1) [54]
RW O(|D|2n3) [44]
PK O(m(h− 1) + h|D|2n) [230]
WL O(|D|hm+ |D|2hn) [45]
CGMM O(L(|D|n+ |D|m))

Table 4.3: Computational costs of graph kernels compared to CGMM. We assume
that all graphs have size n = |Vg|, m = |Eg| edges and maximum degree d. Moreover,
k is the size of the graphlets (i.e., subgraphs) counted by GK, and h is the number of

iterations needed by different procedures to compute the final similarity scores.

Different setups across models. Results for graph classification, under the first of

the two evaluation protocols considered, are shown in Table 4.4. CGMM performs well in

all data sets (scoring top-3 on five of them), even though the probabilistic architecture was

not trained to solve a classification task. In particular, we achieve competing results on

all three collaborative data sets, and we improve the best result on NCI1. This suggests

that learning the distribution of a vertex’s neighbourhood at different abstraction’s levels

produces a rich unsupervised graph representation. As a matter of fact, in 9 out of 10

external folds on NCI1, the model selection procedure chose a configuration with 20

layers; in contrast, the DNGNs of Table 4.4 exploit a maximum of 4 graph convolutions.

The results also highlight that CGMM can perform well even when the only source of

information is structural, i.e., the degree of a vertex.
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D&D NCI1 PROTEINS IMDB-B IMDB-M COLLAB
GK [54] 74.38± 0.7 62.49± 0.3 71.39± 0.3 - - -
RW [44] > 3 days > 3 days 59.57± 0.2 - - -
PK [230] 78.25± 0.5 82.54± 0.5 73.68± 0.7 - - -
WL [45] 78.34± 0.6 84.46± 0.5 74.68± 0.5 - - -
ARMA [158] 74.86 - 75.12 - - -
PSCN [229] 76.27± 2.6 76.34± 1.7 75.00± 2.5 71.00± 2.3 45.23± 2.8 72.60± 2.15
DCNN [231] 58.09± 0.5 56.61± 1.0 61.29± 1.6 49.06± 1.4 33.49± 1.4 52.11± 0.7
ECC [148] 72.54 76.82 - - - -
DGK [47] - 62.48± 0.3 71.68± 0.5 66.96± 0.6 44.55± 0.5 73.09± 0.3
DGCNN [162] 79.37± 0.9 74.44± 0.5 75.54± 0.94 70.03± 0.86 47.83± 0.9 73.76± 0.5
PGC-DGCNN [232] 78.93± 0.9 76.13± 0.7 76.45± 1.02 71.62± 1.2 47.25± 1.4 75.00± 0.58
CGMM-nb 77.35± 1.6 77.02± 1.8 75.11± 2.8 71.07± 3.5 47.36± 3.4 73.3± 2.9
CGMM-full 77.20± 3.1 76.94± 1.6 75.45± 4.4 72.30± 3.5 49.42± 3.6 76.06± 2.4
CGMM 77.15± 3.5 77.80± 1.9 75.56± 3.0 72.1± 2.3 49.73± 1.6 75.50± 2.74

Table 4.4: CGMM’s results of a 10-Fold Double Cross Validation for graph classifica-
tion. Best results are reported in bold. We report CGMM’s accuracy on NCI1 in bold
because it performs better than the other neural models. CGMM-nb indicates that
the model is not using bigram features, whereas CGMM-full represents the extended

CGMM where each layer exploits all previous layers.

Note that kernels can process and compare graphs more explicitly than DGNs: one of

the reasons why the WL kernel has higher accuracy on NCI1 may be due to the kind

of structural patterns used to compute the similarity score. Still, when the number and

size of the graphs to consider increases, using these kernels becomes challenging.

Same setup across models. If re-evaluated under the rigorous setup of Section 3.3,

we can appreciate how CGMM is still competitive against the new pool of models, with

special mention for the social tasks. The structure agnostic baseline, instead, still leads

on D&D, PROTEINS, and IMDB-MULTI.

In addition, please note how large the performance gap can be on some datasets w.r.t. the

former evaluation protocol, with approximately 3 points less on D&D and PROTEINS

for DGCNN and even CGMM (though standard deviation are relatively high). This

is further confirmation that to clearly evaluate progress one should at least keep the

experimental setting identical for all methods.

D&D NCI1 PROTEINS

Baseline 78.4± 4.5 69.8± 2.2 75.8± 3.7
DGCNN 76.6± 4.3 76.4± 1.7 72.9± 3.5
DiffPool 75.0± 3.5 76.9± 1.9 73.7± 3.5
ECC 72.6± 4.1 76.2± 1.4 72.3± 3.4
GIN 75.3± 2.9 80.0± 1.4 73.3± 4.0
GraphSAGE 72.9± 2.0 76.0± 1.8 73.0± 4.5

CGMM 74.9± 3.4 76.2± 2.0 74.0± 3.9

Table 4.5: Mean and standard deviation results on chemical datasets of a 10-fold
Cross Validation (setup of Section 3.3). Best results are reported in bold.
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IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

Baseline 70.8± 5.0 49.1± 3.5 82.2± 3.0 52.2± 1.5 70.2± 1.5
DGCNN 69.2± 3.0 45.6± 3.4 87.8± 2.5 49.2± 1.2 71.2± 1.9
DiffPool 68.4± 3.3 45.6± 3.4 89.1± 1.6 53.8± 1.4 68.9± 2.0
ECC 67.7± 2.8 43.5± 3.1 - - -
GIN 71.2± 3.9 48.5± 3.3 89.9± 1.9 56.1± 1.7 75.6± 2.3
GraphSAGE 68.8± 4.5 47.6± 3.5 84.3± 1.9 50.0± 1.3 73.9± 1.7

CGMM 72.7± 3.6 47.5± 3.9 88.1± 1.9 52.4± 2.2 77.32± 2.2

Table 4.6: Mean and standard deviation results on social datasets of a 10-fold Cross
Validation (setup of Section 3.3). Best results are reported in bold. Note that the

degree is the sole vertex feature used by all models.

Overall, CGMM has proved to be a satisfactory unsupervised model, given that the

richness of its graph embeddings allowed us to get very close to the state of the art.

Vertex Classification

We now turn our attention to vertex classification, specifically on the PPI benchmark.

Following the literature [176], we compare CGMM against GraphSAGE and DGI,

as well as a structure-agnostic baseline that applies logistic regression to the vertex

features. GraphSAGE, DGI, and CGMM share a first pre-training step, in which vertex

embeddings are learned in an unsupervised fashion before feeding the learned vertex

representations to a supervised classifier. Results are shown in Table 4.7: we observe

that CGMM has very good performances, improving against all GraphSAGE variants

but for DGI. Considering that DGI uses GraphSAGE as part of its framework, it seems

that the learning procedure is what generates the gap between the two methods. In

fact, while GraphSAGE relies on a link prediction loss and an entropy penalization

term to learn vertex representations, DGI learns to discriminate vertices according to a

contrastive noise procedure.

Data Used Micro F1
Baseline Vg 42.2
GraphSAGE-GCN Vg, Eg 46.5
GraphSAGE-mean Vg, Eg 48.6
GraphSAGE-LSTM Vg, Eg 48.2
GraphSAGE-pool Vg, Eg 50.2
DGI Vg, Eg 63.8

CGMM-full Vg, Eg 58.4
CGMM Vg, Eg 60.2

Table 4.7: CGMM’s results of inductive vertex classification on PPI. We report the
Micro Average F1 score across the 121 target labels.
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Hyper-parameters’ Analysis

We enrich our empirical analysis with three further studies: the first concerns the impact

of the unibigram technique on performances; the second inspects the potential perfor-

mance advantages of using all previous layers when training a new layer; the last one

investigates whether a wider model with fewer layers can perform as well as a deep model

with fewer hidden states. With the exception of the second study, the other analyses

will use the information coming from the previous layer, i.e., L(`) = {`− 1}.

Unibigram Ablation In Table 4.4, we re-evaluated the model on all data sets by

constraining CGMM to only use unigrams (CGMM-nb). Results indicate a slight per-

formance drop on chemical data sets and a larger decrease in social data sets. This

suggests that, especially when we only have access to structural information (i.e., the

degree distribution), computing a graph representation that takes the structure into ac-

count can be helpful. Nevertheless, CGMM-nb performances still remain good with

respect to the state of the art.

On the Impact of Previous Layers We repeated all experiments by condition-

ing each layer of the architecture on the entire subset of previous layers, i.e., L(`) =

{1, . . . , `− 1}. This way, each layer is free to weigh the previous layers (thanks to the SP

variable) to maximize the likelihood of each graph. Results (Table 4.4 and 4.7, CGMM-

full) indicate that the model performs almost always on par w.r.t. the significantly more

efficient version that does not use the SP variable Lu. Nonetheless, despite the negligible

performance advantage obtained on these tasks, we recommend treating the use of Lu as

a hyper-parameter of the model when dealing with other vertex or graph classification

tasks.

Sensitivity Analysis When designing any deep network (let it be neural or proba-

bilistic), it is useful to analyze the relation between the dimension of each layer’s hidden

representation and the number of layers in terms of performance variations. For DGNs

the depth of the architecture is functional to context spreading, so we would expect that

having a larger hidden representation for each layer is not enough to compensate for the

flow of information between vertices. We provide an example in Figure 4.5 to show how

the validation accuracy of a logistic regressor on NCI1 varies while changing the number

of hidden states C and CGMM’s depth. It can be seen that the graph representation

associated with point A (of size C = 60) is not sufficient to achieve the same performance

of the graph representation associated with point B (C = 45). This means that depth is

crucial to encode more information.
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Figure 4.5: This picture shows that using a large C but few layers is not always enough
to reach the same performance of a deeper network with a smaller C. Points A and
B are associated with representations of dimensions C = 60 and C = 45, respectively.
However, the latter has better validation performances if we consider a logistic regressor
on NCI1, which means that the flow of context is indeed more beneficial than increasing
the number of hidden states C. Results are averaged over five independent runs and

standard deviations are shown as colored bands.

On the Effects of Depth This Section is meant to answer to two further research

questions. First, we want to quantify the effect of depth on the architecture when cou-

pled with a classifier. The second point is about understanding how much the model’s

performance is affected by a random initialization of the layers. To address both ques-

tions, we took a random train-validation-test split of NCI1 to conduct a new experiment.

With its 4110 graphs, NCI1 was chosen to minimize the effect of the data split on results

and consequently on the random initialization of the classifier. In contrast, the other

chemical data sets seem more data split-dependent. We trained a 20-layer CGMM for

some of the configurations defined in Table 4.2, and we repeated each process five times

averaging the results. Figure 4.6 reports the accuracy versus the number of layers for

such configurations, with logistic regression or MLP classifiers. We see that, in both cases

(top part of the figure), depth has a beneficial effect on test accuracy, with slightly worse

results on test accuracy when using logistic regression due to its strong bias. Notice how

validation and test curves tend to an asymptote after ten layers; this information may

be used as stopping criterion when constructing the architecture for supervised tasks, as

proposed in [233] for convolutional networks on images.

One interesting thing to notice is that we do not necessarily incur in the curse of di-

mensionality as the size of the fingerprint grows larger and larger with the layers. This
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Figure 4.6: Stability experiments on NCI1 with logistic regressor (top left) and MLP
(top right), PROTEINS with MLP (bottom left) and D&D with MLP (bottom right),
which show how accuracy varies from 1 to 20 layers. Results are averaged over five
independent runs. Colored bands denote standard deviation. While the effect of depth
is beneficial for NCI1, a different behavior emerge on PROTEINS and D&D, which is

not to be attributed to random splits.

cold be ascribed to the fact that the fingerprint construction at layer ` is guided by layer

`− 1, and this dependency generates a completely different learning problem at each

layer. This may explain why we do not quickly overfit the training data after the 20

layers.

In addition, since the training accuracy on NCI1 does not significantly vary between

different runs (due to different weights’ initialization), we get an indication that the

pooling strategy of [146], used in our preliminary contribution [6] brings a negligible

advantage to CGMM. This also holds for PROTEINS and D&D when the architecture

is very shallow (up to three layers), though results need to be taken with a pinch of salt

because of the discussion of Section 3.3.3. As a matter of fact, it is still an open question

whether a dataset is “too simple” or the graph convolutions devised so far are unable to

extract the relevant features from the graphs.
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Visualization: a Case Study

This part provides a visual exploration and interpretation of CGMM’s internal dynamics.

This kind of analysis is meant to demonstrate how the model extracts different patterns

at each layer of the architecture in a way that is consistent with what stated Chapter

3. Therefore, Figure 4.7 sketches how information spreads in a real NCI1 molecule.

We represent each vertex’s posterior as a pie chart with C different colours; in this

experiment, we use a 4-layer CGMM with C = 3. Please keep in mind that colours

assignment between different layers is irrelevant. The rightmost six atoms of the molecule

have the same atomic symbol, so they will be assigned an identical state at layer 1. What

is more, these six atoms alone form a 2-regular subgraph, which means that their state

can only change if context flows from left to right, as shown by the dashed arrows on

the top-left side of the figure. If it were not for the five leftmost vertices context could

not flow, because all neighborhoods would look identical to the model. At each layer, we

highlight the vertices of interest inside a dashed regions, and the associated heatmap of

states (one vertex’s posterior per row) proves that information flows as expected.

Figure 4.7: Context flow on a real NCI1 graph. We focus on the highly regular
rightmost subgraph, which is influenced by the left part of the structure. Posterior’s
heatmaps show that, although relatively small, posteriors of vertices change as expected.
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4.1.11 Summary

In this section we have introduced the core contribution of the thesis. The Contextual

Graph Markov Model is a deep, unsupervised, fully probabilistic, and efficient way to

compute vertex/graph embeddings. It brings together the principles of Deep Graph

Networks and the probabilistic tools of Bayesian networks. In the experiments, we have

shown that the model allows a common classifier to reach the state of the art on different

classification tasks, even though the input embeddings were not specifically calibrated

for supervised learning.

Despite our enthusiasm, there are still many ways in which we can improve CGMM.

Throughout the thesis, we saw that regular graphs cannot be discriminated by the model,

or that the mean aggregator is not as expressive as the sum. Solving this issues in

CGMM while maintaining the fully probabilistic nature of the method is not an easy

task. The same can be said for graphical extensions of the model to make it dependent

on a target label: implementing a permutation invariant readout transduction that is

also tractable remains an unsolved problem, to the best of our knowledge. Notably, the

use of a SP variable to model the global aggregation would not work, because the SP

does not consider mutual dependencies between the elements to aggregate. For these

reasons, a potential future direction would be to devise an efficient sum-based neighbor

aggregator and/or readout such that we can still compute closed form solutions when

training each layer of our architecture. These two contributions would greatly enhance

the expressivity of the probabilistic framework we have introduced.

Another important limitation of CGMM is that its applicability is restricted to the

use of discrete edge labels. This is problematic when we want to take into account the

distance between entities in the graph or a more complex edge feature that lives in a

multi-dimensional space. We know, however, that this problem can be addressed, and

the next section will be just devoted to that.



108

4.2 Beyond Discrete Edge Features [8]

We turn our attention to the problem of modeling (possibly multidimensional) contin-

uous edge features in our deep and fully probabilistic framework. The benefits of the

methodology we are about to propose are multi-faceted. First and foremost, we extend

CGMM to enlarge the classes of graphs it can handle. Secondly, we show that the

unsupervised model can build richer graph representations even in the absence of edge

features.

It is easy to see why we cannot keep using the Switching Parent technique in the presence

of continuous edge features. If the support of the p.d.f. associated with the SP variable

was infinite, we would have to replace the summation over the discrete states with an

integral. By doing that, we would lose the closed-form solutions to the MLE estimation

problem as well as the convergence guarantees of the EM algorithm. Because we want to

preserve these nice characteristics of CGMM, we have to resort to a different solution.

The key aspect of our contribution is the following: we can learn to “discretize” edge

features so as to use them in the original CGMM model. To do that, we adopt an

architectural approach in which we train a secondary Bayesian network to model the

generation of edge features. The (discrete) edge state will then be used by the SP

variable of the original CGMM model. Empirically, we will show that this is better than

using a hand-made heuristic to obtain discrete edge features, and the advantage persists

even when edge features are absent from the graph.

In the following sections, we will briefly introduce the mathematical variations to the

model, which we will call Extended Contextual Graph Markov Model (E-CGMM), not-

ing how the derivations do not change in any way. The asymptotic complexity will

remain linear in the number of edges, so the model will still be fairly efficient. Then,

we will highlight the performance improvement against CGMM on graph classification

benchmarks, which can be attributed to the richness of the learned graph representa-

tions. Moreover, we will study the impact of E-CGMM on a graph regression and three

link prediction tasks, to show the advantage of explicitly modeling the generation of edge

features.
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4.2.1 Layer Definition

The graphical model of each E-CGMM’s layer is represented in Figure 4.8: an addi-

tional Bayesian network, very similar to that of CGMM, is responsible for modeling the

generation each edge feature auv through a latent categorical variable Quv. This variable

can take CE different values, in contrast to the number of latent states of the original

models that we will call CV from now on. In principle, edges act as fictitious vertices

whose neighbors are the source and destination vertex states inferred and frozen at the

previous layers. In the interest of clarity, we will omit the layer-wise SP variable and

consider contributions coming from the previous layer only. In addition, the “edge com-

ponent” on the right uses two special discrete edge labels, one for the source (As) and

one for the destination Ad states, to model the direction of the edge under consideration.

If the graph is undirected, we can assume a uniform distribution for the SP variable Suv.

Qu

Xu

Q`−1
|Nu|Q`−1

2Q`−1
1

Su

. . .

Quv

Suv
Auv

Q`−1
vQ`−1

u

As Ad

Layer `

u ∈ Vg
g ∈ D

Layer `

(u, v) ∈ Eg
g ∈ D

Figure 4.8: Graphical model of a generic layer ` of E-CGMM. Dashed arrows denote
the flow of contextual information coming from previous layers. We have omitted the

SP variables Lu and Luv for simplicity of exposition.

Formally, we model the generation of vertex and edge features as follows:

P (xu | Q`−1
Nu ,Q

`−1
Eu ) =

CV∑
i=1

P (xu | Qu = i)︸ ︷︷ ︸
vertex emission

P (Qu = i | Q`−1
Nu ,Q

`−1
Eu )

P (auv | Q`−1
u , Q`−1

v ) =

CE∑
i=1

P (auv | Quv = i)︸ ︷︷ ︸
edge emission

P (Quv = i | Q`−1
u , Q`−1

v ),

where Q`−1
Eu denotes the set of states inferred by the edge component at the previous

layer. Likewise CGMM, when ` = 0, the equations simplify and the layer implements
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two standard mixture models that do not consider contextual information.

Thanks to the fact that frozen edge states are inferred from a categorical variable, we

approximate the conditional distribution of the vertex component as

P (Qu = i | Q`−1
Nu ,Q

`−1
Eu ) =

CE∑
a=1

P (Su = a)︸ ︷︷ ︸
SP

P a(Qu = i | Q`−1
Nau ,Q

`−1
Eu )︸ ︷︷ ︸

vertex transition

.

This last equation, while apparently similar to the one of CGMM, shows the interplay

between the vertex-centric and edge-centric components of E-CGMM, which makes it

possible to incorporate arbitrary edge information in the fully probabilistic neighborhood

aggregation scheme.

Similarly, the rightmost term of P (auv | Q`−1
u , Q`−1

v ) can be decomposed as

P (Quv = i | Q`−1
u , Q`−1

v ) =

As,Ad∑
a

P (Suv = a)︸ ︷︷ ︸
SP

P a(Quv = i | Q`−1
a )︸ ︷︷ ︸

edge transition

,

where we remind that As and Ad are the discrete labels assigned to source and destination

vertices, respectively, and Q`−1
a is Q`−1

u if a = As, and Q`−1
v otherwise.

The last brick in the formalization of the model is the definition of the transition distri-

bution P a(Qu = i | Q`−1
Nau ,Q

`−1
Eu ). Using the additional edge information we have, we can

write

P a(Qu = i | Q`−1
Nau ,Q

`−1
Eu ) =

CV∑
j=1

P a(Qu = i | Q`−1
∗ = j)

∑
v∈Nau

q`−1
v (j)

q`−1
uv (a)∑

v∈Nau q
`−1
uv (a)

where we recall that qu(j) and quv(j) are the j-th components of the inferred states

(represented as a vector) inferred at the previous layer. The transition distribution we

just presented is a generalization of Equation 4.3, where we have exploited the posterior

of each edge to weight the contribution of the individual neighbors. Moreover, as in

CGMM, we assume full stationarity on vertices and on edges, meaning that we share

the parameters of the emission, transition, and SP distributions across all vertices or

edges depending on the component of E-CGMM.

To train an E-CGMM layer, and similarly for inference, it is sufficient to apply EM

to the two independent Bayesian networks, and use their inferred states as statistics

for the subsequent layer of the architecture. We remark that. mathematically speaking,

we are still dealing with conditional mixture models. Therefore, at the cost of training

an additional network for edges, which shares a similar time complexity as the original

CGMM, we obtain a deep architecture capable of building both vertex and edge
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embeddings from raw graphs, something that not many other DGNs can do to the best

of our knowledge.

4.2.2 Dynamic Neighborhood Aggregation

There is one subtle but very important difference between CGMM and E-CGMM that

could potentially contribute to the richness of vertex embeddings produced by the latter.

Whenever edge features are missing but a dummy feature is used in their place, the

edge latent states can still vary across the graph because they depend on the source and

destination frozen states. Therefore, at different layers, the posterior distributions of

the same edge may be different regardless of the absence of real edge features. From

a methodological point of view, this allows for different groupings of the same vertex

neighbors at different layers. On the other hand, CGMM always groups neighbors in the

same way, since it relies on static and discrete edge features. We denote this peculiar

characteristic of E-CGMM with the term “dynamic neighborhood aggregation”, which

is sketched in Figure 4.9. We believe this is the main reason why E-CGMM shows

significant performance improvements with respect to CGMM on the graph classification

benchmarks, as we will see in the following.

Layer `− 1 Layer `

quv = 1

quv = 2

quv = 3
quv = 2

quv = 1

quv = 3
quv = 4

u u

Figure 4.9: We show an example of dynamic neighborhood aggregation with CE = 4.
At layer `− 1, the neighbors of vertex u are split into 3 groups according to the edge
states computed at layer `− 2. Because edge states vary, at layer ` a different grouping

of the same neighbors can be induced.
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4.2.3 Complexity and Scalability

E-CGMM shares an asymptotic efficiency comparable, in both time and space, to

CGMM. At a given layer `, the complexity of E-CGMM’s vertex component is bounded

by O(|Vg|(CEC2
V + KCV ), where K is the number of vertex features. To compute the

posterior and bigram of each vertex, time complexity is again O(|Eg|). Hence, the overall
time complexity becomes O(|Vg| + |Eg|). Instead, the edge component of E-CGMM

is bounded by O(|Eg|(2CECV + KC). Clearly, the time complexity of our extension

will be always strictly greater than CGMM; however, asymptotically speaking, it is still

controlled by O(|Vg|+ |Eg|) whenever CV � |Vg|, CV � |Eg|, CE � |Vg|, and CE � |Eg|.

4.2.4 Embeddings Construction

Differently to CGMM, after the inference phase we will obtain both vertex and edge rep-

resentations At model selection time, we can still choose to concatenate a vertex unigram

and bigram (obtaining a unibigram) or not. However, to obtain graph representations

at each layer `, we shall independently aggregate all vertex and edge representations in

the graph via permutation-invariant operators, such as the mean or the sum, followed

by concatenation of the two resulting vectors. The final unsupervised graph embedding

is then the concatenation of these embeddings across all layers of the deep architecture.

4.2.5 Experimental Setting

To assess the performances of E-CGMM, we will carry out three different evaluations.

First, we will compare against the same set of graph classification benchmarks on which

we evaluated CGMM. Secondly, we will show the importance of adaptively discretizing

edge features on a graph regression benchmark. Finally, we will compare CGMM and

E-CGMM on the three link prediction tasks following a rigorous evaluation scheme.2.

Graph Classification

Please recall that the datasets under consideration do not provide edge attributes, so

the scope of our analysis is to evaluate the richness of graph embeddings given by the

dynamic aggregation mechanism as well as the use of posterior edge probabilities.

We follow the empirical evaluation of Section 3.3.
2https://github.com/diningphil/E-CGMM

https://github.com/diningphil/E-CGMM
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In terms of hyper-parameters, we set CV to 203 whereas CE was chosen from {5, 10}. The
other hyper-parameters are selected according to Table 4.2, to keep the model selection

as similar as possible between the two methods.

Graph Regression

To understand the importance of handling continuous edge information, we consider the

QM7b graph regression task [234, 235], a chemical dataset composed of more than 7k

organic molecules. The task is to predict 14 continuous properties of each molecule, where

a molecule is associated with a Coulomb interaction matrix that is used to extract vertex

and edge features. The entry (i, j) of the Coulomb matrix is proportional to the product

of nuclear charges of atoms i and j and inversely proportional to their distance (for non-

diagonal elements). In the dataset, there are 6 different continuous diagonal elements

of the matrix, which are used as discrete labels for the vertices. On the other hand,

we consider edges associated with matrix entries greater than 0.52 to induce sparsity on

the graph. To quantitatively evaluate the goodness of E-CGMM, we rely on the Mean

Absolute Error (MAE) objective function.

To show that a naive edge discretization technique may not work well, we consider an al-

ternative representation of the molecules where we discretize the continuous edge features

using 10 bins of equal widths, so that we can train CGMM using the SP technique.

We used the same model selection and assessment setup of graph classification to get

reliable performance estimates. We tried different configurations with depth in {10, 20},
CE in {5, 10}, CV in {10, 20} for CGMM and 20 for E-CGMM, continuous or discrete

frozen states, unigrams or unibigrams, and sum or mean aggregation. The MLP con-

figurations, after a preliminary screening on the validation set to reduce the number of

configurations, were: 2000 maximum epochs, hidden layer dimension in {32, 128}, and
learning rate equal to 5 · 10−4. Early stopping’s patience was set to 100, and the L2

regularization had weight decay 10−4.

Link Prediction

Since E-CGMM can model the generation of edges at each layer, we also tested some

link prediction benchmarks, namely Cora, Citeseer and Pubmed [177]. These are three

citation networks (i.e., undirected graphs) in which vertices represent documents, and

edges represent citations. Because there is no standardized evaluation on these datasets
3This value was shown to guarantee better or on-par performances than smaller values during our

CGMM experiments, therefore we fixed it to reduce the already large number of configurations to try.
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when it comes to link prediction, the goal of these experiments will be to just show how

E-CGMM can tackle link prediction by design, with better performances than CGMM.

To adopt a robust experimental protocol even in this third task, we perform 10-fold cross

validation for model assessment, with an hold-out technique for model selection. Yet,

the difference with the previous tasks lies in how we build each outer fold. In this case,

portions of positive edges in each graph are used as validation and test sets, together

with a randomly selected subset of negative edges. The remaining edges are used to train

both our models. Since CGMM does not produce edge embeddings, we used an MLP to

predict whether a link (u, v) exists starting from the mean embedding huv = (hu+hv)/2.

In particular, we chose the mean operator over concatenation because the latter would

introduce asymmetries, i.e., learning difficulties, when modeling the existing undirected

edges. To infer the existence of an undirected link using E-CGMM, we construct the

mean embedding huv at each layer using the posterior distributions of Quv and Qvu.

For every dataset and for both models, we choose the following hyper-parameters: CV ∈
{10, 20} and number of layers in {2, 4, 6, . . . , 20}, CE ∈ {5, 10} (E-CGMM only), discrete

or continuous vertex representations, and unigrams or unibigrams. For the MLP, we

chose the learning rate in {10−3, 10−4, 10−5}, the hidden dimension in {128, 256}, and
weight decay in {10−3, 10−5}.

4.2.6 Results

We now present our empirical findings starting from graph classification to graph re-

gression and link prediction. The goal of this section is simply to show that E-CGMM

almost consistently improves the metrics of interest.

Graph Classification

Chemical and social graph classification results are detailed in Tables 4.8 and 4.9. They

show how E-CGMM is basically on par with CGMM on those tasks where the baseline

is able to get near to or better than the state of the art, but it improves on the oth-

ers. Notably, there is a substantial gap on NCI1 and both REDDIT tasks. We believe

such improvements are attributable to the new capabilities introduced with the edge

component of each layer, i.e., the ability to dynamically aggregate neighbors, in a way

that explicitly and adaptively depends on the local connections, and the “new” graph

embedding enriched with global edge information.
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Table 4.8: Mean and standard deviation results on chemical datasets of a 10-fold
Cross Validation (setup of Section 3.3). Best results are reported in bold.

D&D NCI1 PROTEINS

Baseline 78.4± 4.5 69.8± 2.2 75.8± 3.7
DGCNN 76.6± 4.3 76.4± 1.7 72.9± 3.5
DiffPool 75.0± 3.5 76.9± 1.9 73.7± 3.5
ECC 72.6± 4.1 76.2± 1.4 72.3± 3.4
GIN 75.3± 2.9 80.0± 1.4 73.3± 4.0
GraphSAGE 72.9± 2.0 76.0± 1.8 73.0± 4.5
CGMM 74.9± 3.4 76.2± 2.0 74.0± 3.9

E-CGMM 73.9± 4.1 78.5± 1.7 73.3± 4.1

Table 4.9: Mean and standard deviation results on social datasets of a 10-fold Cross
Validation (setup of Section 3.3). Best results are reported in bold. Note that the

degree is the sole vertex feature used by all models.

IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

Baseline 70.8± 5.0 49.1± 3.5 82.2± 3.0 52.2± 1.5 70.2± 1.5
DGCNN 69.2± 3.0 45.6± 3.4 87.8± 2.5 49.2± 1.2 71.2± 1.9
DiffPool 68.4± 3.3 45.6± 3.4 89.1± 1.6 53.8± 1.4 68.9± 2.0
ECC 67.7± 2.8 43.5± 3.1 - - -
GIN 71.2± 3.9 48.5± 3.3 89.9± 1.9 56.1± 1.7 75.6± 2.3
GraphSAGE 68.8± 4.5 47.6± 3.5 84.3± 1.9 50.0± 1.3 73.9± 1.7
CGMM 72.7± 3.6 47.5± 3.9 88.1± 1.9 52.4± 2.2 77.32± 2.2

E-CGMM 70.7± 3.8 48.3± 4.1 89.5± 1.3 53.7± 1.0 77.45± 2.3

Graph Regression

Table 4.10 reports our graph regression analysis. We can see that E-CGMM performs

better than both versions of CGMM, i.e., one that ignores edge attributes and the other

working on discretized edge labels. In particular, there is a relative improvment in MAE

of 17%-19% that was to be expected, given the importance of the information contained

in the Coulomb interaction matrix. Such an improvement also proves the inadequacy of

non-adaptive edge discretization techniques, which not only may force the user to take

decisions a-priori but might also cause loss of relevant information.

MAE Relative Improvement
CGMM-no edge attributes 1.52± 0.05 19%
CGMM-discretized edges 1.49± 0.07 17%

E-CGMM 1.23± 0.06 -

Table 4.10: Graph regression results and relative improvement of E-CGMM compared
to CGMM. Best results are in bold. CGMM results are reported for both a version of

the dataset with no edge attributes as well as for discretized edge labels.
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Link Prediction

We conclude our analysis with link prediction experiments, summarized in Table 4.11.

The numbers indicate a substantial improvements with respect to CGMM on every

dataset tested, with an average accuracy increase of 3%-4%. By modeling the generation

of positive and negative edges, E-CGMM captures the conditional distribution of the

edges given the frozen vertex states, thus building more informative edge posteriors. On

the other hand, the way in which we have built edge representations with CGMM is yet

another a-priori choice that we have managed to avoid with this new method.

Cora Citeseer Pubmed
CGMM 82.62± 1.8 74.47± 2.2 77.09± 1.9
E-CGMM 86.76± 2.3 77.69± 1.7 81.58± 1.6

Table 4.11: Comparison between E-CGMM and CGMM on link prediction tasks.
Best results are reported in bold.

4.2.7 Summary

We have extended our fully probabilistic framework with an “edge-aware” version of

the Contextual Graph Markov Model. E-CGMM allows us the process a broader class

of graphs with potentially arbitrary edge features. To achieve this goal, we took an

architectural approach by introducing an additional Bayesian network responsible for the

generative modeling of edge features. Thanks to the richer graph embeddings produced,

we have observed empirical improvements with respect to CGMM on three different

tasks, while keeping the asymptotic complexity linear in the number of edges.

It is worth noticing that many of the future directions lied down in Section 4.1.11 would

implicitly apply here, as they involve modifying the Bayesian network rather than ar-

chitectural aspects. Combined with the benefits of explicitly modeling edge features, we

believe there is still room for improvement on both technical and empirical sides.
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4.3 The Infinite Contextual Graph Markov Model

As with most Deep Graph Networks, one inherent limitation of CGMM is the absence

of a mechanism to learn the size of each layer’s latent representation. This is also related

to one of the most challenging problems of machine learning, that is, the selection of

appropriate hyper-parameters for the task at hand. In fact, due to the data-dependent

nature of the learning problem, we have seen throughout this thesis that there exists no

single model configuration that works well in every situation. One usually relies on model

selection techniques such as grid or random searches [236], where the hyper-parameters

configurations to try are chosen a-priori by the machine learning practitioner.

In Chapter 2, however, we have briefly introduced Bayesian nonparametric methods, in

particular HDP mixture models, that automatically choose the “right” amount of clusters

to use [27]. We recall that, in the BNP literature, the complexity of the models, e.g.,

the number of states, automatically grows with the data [24]. Since each CGMM is

essentially a conditional mixture model, it would make sense to apply a BNP treatment

to CGMM in order to automatize the choice of its hyper-parameters.

In this section, we present our last methodological contribution to the family of Deep

Bayesian Graph Networks. The principal difficulty of extending CGMM lies in how to

handle the variable-size number of neighbors of each vertex inside the BNP framework,

which in CGMM is solved by (possibly weighted) convex combinations of the frozen

neighbors’ posteriors. We shall see how the notion of a neighboring macro-state will

be particularly useful in this context. It is thanks to this realization that we will be able

to replace the CGMM layer with an HDP mixture model, without incurring in major

technical challenges.

The resulting model, called Infinite Contextual Graph Markov Model (iCGMM), can

generate as many latent states as needed to solve the unsupervised density estimation

task at each layer. To the extent of our knowledge, this is the first deep, Bayesian

nonparametric model for graph processing. To increase its efficiency, and despite the

existence of variational inference alternatives [237–240], we opted for a straightforward

and faster heuristic that scales to the social datasets considered in this thesis, requires

little code modification, and works as well as the original implementation.

We compare iCGMM against CGMM, E-CGMM and end-to-end supervised methods

on the graph classification tasks of Section 4.1.9. Results show that iCGMM performs

on par or better than CGMM. We complement the analysis with studies on the effects

of depth and generation of our model’s latent states. All in all, we believe that iCGMM

is an important (if not the first) step towards a theoretically grounded and automatic

construction of Deep Bayesian Graph Networks.
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4.3.1 Layer Definition

There are different ways to define an HDP mixture model, but we will mainly use the

stick-breaking construction of Section 2.1.4.2. Nevertheless, another representation ex-

ists, called Chinese Restaurant Franchise (CRF), which will be needed in the following.

The CRF extends the CRP to hierarchical models, by assuming that there are C̄ “restau-

rants”, i.e., the known groups assigned to observations in an HDP. Each observation, in

our case the variable Xu, is called a “customer”. Following the HDP mixture model lit-

erature, each vertex u must be already assigned to one of the C̄ different groups. Hence,

we will use the term nj to indicate the number of customers eating at restaurant j, i.e.,

given a graph g it must hold
∑C̄

j=1 nj = |Vg|. In addition, a latent state c, modeled by

the mixture variable Qu, will be assigned to each vertex.

The value that Qu takes, namely qu, specifies one of the emission components of the

possibly infinite mixture model, which is parametrized by θc, c ∈ N. Continuing with

the CRF metaphor, we can say that a customer u goes to restaurant ju and sits at one

of the tables tu where dish qu = c is served. Importantly, we assume stationarity of the

emission distributions with respect to the groups, meaning there is a form of parame-

ter sharing of the emission distributions across different groups. It is appropriate to

remark that the assignment of a customer u to a specific table tu is unnecessary in the

Stick-breaking formulation we will use, but the CRF notion of “table assignment” will

provide an exact and efficient way to solve some technical challenges in the implementa-

tion of the model. Finally, please recall from Section 2.1.4.1 that even if the number of

the possible latent states is infinite, only a finite number of them will be used in the

model’s implementation. Hence, we refer to this finite value of clusters with the usual

symbol C.

The graphical model of a generic iCGMM layer ` is shown in Figure 4.10, where most

of the notation has already been described in Section 2.15. We model the generative

process of the observable vertex feature Xu conditioned on a set of observable variables

of neighboring vertices Q`−1
Nu = {Q`−1

v ∈ [0, 1]C̄ | v ∈ Nu}, i.e., the usual vectors of

probabilities inferred and frozen at the previous layer. It follows that in iCGMM each

layer has a different number of groups C̄`; when clear from the context, we will omit the

symbol ` to ease the notation.

Overall, the generative process of a single iCGMM layer can be formalized as follows:

β | γ ∼ Stick(γ) ju | Q`−1
Nu = ψ(Q`−1

Nu )

πj | β, α0 ∼ DP(α0,β) qu | ju, (πj)C̄j=1 ∼ πju
θ |H ∼H xu | qu, (θ)∞c=1 ∼ F (θqu),

(4.7)
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...

γ β

α0 πj

θc

c = 1 . . .∞

j = 1 . . . C

u = 1 . . . nj

Q`−1
2

Q`−1
1

Q`−1
|Nu|

Qu

Xu

H

Layer `

u ∈ Vg
g ∈ D

Figure 4.10: Graphical model of a generic iCGMM layer `, where observable variables
are blue circles, latent ones are white ones, and white boxes denote prior knowledge.
This is an HDP mixture model where the group ju for each observationXu is determined
by the set of neighboring states. The symbol C̄ corresponds to the selected number of
states determined at the previous layer of the deep incremental architecture. Dashed

arrows denote the flow of contextual information.

where F (θqu) denotes the emission distribution parametrized by θqu , and ju is the group

of vertex u chosen according to a permutation invariant function ψ(QNu). To generate a

possibly infinite number of emission distributions, we sample from a prior distributionH.

Instead, we sample the distribution β via the Stick-breaking process Stick(γ) (Section

2.1.4.1). In turn, β is used by a DP to generate the distribution πj , responsible for

sampling the dish qu that customer u eats at restaurant ju.

Deterministic Choice of the Group

The crux of the matter is that we need a sensible way to assign each observation to one of

the C̄ groups. Contrarily to a standard HDP, in which the groups are somehow known,

here we cannot rely on a-priori information to make the assignments at each layer. The

reason is two-fold: i) we would need an oracle for the layer-wise assignments, since these

do not have a straightforward interpretation in our context; ii) if we fixed in advance

the group for each observation for all layers, there would be no contextual information

to spread across the graph, and therefore all HDPs would be truly independent between
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each other. It follows that, to induce a dependency between subsequent layers, we must

again rely on the frozen states of each vertex as CGMM. These states are indeed the

only actionable information we have in order to propagate information across the graph.

The question now becomes how to obtain a group from the set of frozen states of each

vertex. In an attempt to be as similar as possible to CGMM, we can reuse the concept

of macro-state introduced in the previous sections. By considering the simplest version

of a CGMM layer, i.e., the one without the SP variables, we can take the mean of the

neighboring states and assign vertex u to the most likely position ju in the resulting

macro-state vector. Two important observations follow:

• The ju is chosen deterministically, as in standard HDPs, because the states have

been frozen in advance;

• The value of ju changes at each layer according to the distributions of neighboring

states. In other words, ju is the sole responsible for information propagation at

each layer.

Formally, to exploit the structural information of the graph and to stick as much as pos-

sible to the original CGMM formalism, we chose to select ju according to this straight-

forward rule:

ju = ψ(Q`−1
Nu ) = arg max

j∈{1,...,C̄`}

( 1

|Nu|
∑
v∈Nu

Q`−1
v

)
j
. (4.8)

Thanks to Equation 4.8, vertices with the same features may have a different latent state

c, due to the fact that they are assigned to different groups, i.e., different πj , on the basis

of their neighborhood. Again, this mimics the role of the CGMM transition distribution

but in an HDP.

If we wanted to reason using the CRF jargon, Eq. 4.8 could be equivalent to have a

customer go at the restaurant that was recommended the most by the customer’s friends.

As in [7], we chose to average the parameters of the richer distributions Q`−1
v , ∀v ∈ Nu

rather than perform majority voting amongst the most likely state of every neighbor.

Still, notice that the former choice reduces to the latter when the discrete distributions

collapse all their probability mass into a single state (one-hot representation).

Finally, and similarly to CGMM, the very first layer of iCGMM is just an HDP mixture

model with one group, as no neighboring states have been inferred yet. The reason why

we did not choose a simpler DP mixture model is that an HPD tends to generate a fewer

number of latent states in our experiments.
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On Exchangeability

Every iCGMM relies on the exchangeability assumption of DPs to be trained. Recall

that exchangeability (informally) states that the observations xu of our dataset are not

independent but the order in which we look at them does not matter [25]. Exchange-

ability is trivially satisfied in iCGMM, because the observations Xu are assumed to be

i.i.d. when conditioned on the neighboring states.

Summing up, we depart from the basic CGMM layer in more than one way. First and

foremost, we do not parametrize nor learn the CGMM transition distribution, which

was responsible for the convex combination of neighboring states when computing the

E-step of the EM algorithm. Instead, we rely on the most probable choice of the group

ju that is encoded by the neighbors’ macro-state. Secondly, due to the sheer complexity

of the Bayesian nonparametric treatment, we do not train the model via EM as done

with CGMM and E-CGMM; instead, we will exploit Gibbs sampling to compute the

quantities of interest. Nonetheless, apart from the conceptual similarities, iCGMM

retains one important characteristic of CGMM, i.e., it prevents vanishing gradient effects

and over-smoothing by default [7], thus allowing us to construct deeper architectures that

freely propagate contextual information.

4.3.2 Inference

The inference phase determines the latent state of u and updates the iCGMM’s parame-

ters. This happens at each iteration of the HDP Gibbs sampling algorithm [23, 24, 241].

Note that it is also possible to iteratively estimate the hyper-parameters α0 and γ: when-

ever that is the case, we shall append a subscript “auto” to our model’s name. We start

with the latent indicator variable qu, which is sampled from the following conditional

probability

q`u(c) = P (qu = c | ju = j,Q−u,β,θ,x) ∝ (α0βc + n−ujc )f(xu | θc), c ∈ {1, . . . , C + 1},
(4.9)

where C denotes the number of current states in the mixture model, f is the p.d.f.

associated with F , Q−u is the set of latent states assigned so far to each vertex, and

the distribution πj has been integrated out [24]. Here, n−ujc indicates the number of

observables associated with latent state c and belonging to group j. Whenever we have

that qu = C + 1, we create a new state and sample a new emission distribution θC+1

fromH. On the contrary, if at the end of an iteration there are no observables associated

with state c, we can remove that state and decrease C by 1. This is how the HDP, and

hence iCGMM, varies in complexity to fit the data distribution.
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In the HDP stick-breaking representation, we require an auxiliary variable method to

sample the base distribution β [24]. We therefore introduce the auxiliary variables m =

{mjc | ∀j ∈ {1, . . . , C̄},∀c ∈ {1, . . . , C}} that need to be sampled in order to compute

β. However, since mjc is dependent on njc, the sampling step of these variables is very

inefficient for large values of njc, as the probability values are proportional the Stirling

number of the first-kind s(njc, ·) [242]. Luckily, we can avoid this step thanks to the

CRF formulation, as anticipated. The key point is that the value mjc corresponds to

the number of tables where dish qu = c is served at group j in the CRF representation

[24, 241]; thus, we can compute each mjc by simply simulating the table assignments

process in addition to the Stick-breaking machinery.

Knowing that customer u is eating dish qu = c, its table assignment tu can be sampled

according to:

P (tu = t | qu = c, ju = j, c, t−u,β, α0) ∝

ñ
−u
jt , ∀t s.t. cjt = c;

α0βc, t = tnew,
(4.10)

where t−u represents the tables assigned to each vertex up to now, cjt ∈ c specifies the

dish assigned to table t at restaurant j and ñ−ujt denotes the number of customers (except

u) sitting at table t of restaurant j. Since we know the dish qu selected by the customer

u, there is zero probability that the customer sits to a table where that dish is not served.

The creation and deletion of tables is very similar to that of Equation 4.9, so we skip it

in the interest of the exposition and refer to the pseudocode at the end of the section for

a complete treatment. Practically speaking, these auxiliary variables are counters that

can be updated in parallel to the Stick-breaking implementation.

After computingmjc, i.e., mjc =
∑

t′ I[cjt′ = c], the base distribution β is updated using:

β | Q,m ∼ Dir(
C̄∑
j=1

mj1, . . . ,

C̄∑
j=1

mjC , γ), (4.11)

where Dir stands for the Dirichlet distribution andQ is the set of latent states assigned to

the vertices. The last step of the Gibbs sampling aims to update the emission parameters

θ using its posterior given the observable variables:

P (θc | Q,x) ∝ h(θc)
∏

∀u|qu=c

f(xu | θc). (4.12)

By choosing the family of the base distribution H to be a conjugate prior for F , e.g.,

a Dirichlet distribution for Categorical emissions or a Normal-Gamma distribution for
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Normal emissions, we can compute the posterior in closed form using the usual data

statistics, summarized below.

Posterior of the Emission Distribution

We consider the two cases of a discrete and continuous vertex feature.

Categorical Emission Let the emission distribution be a categorical distribution with

K possible states. When creating a new state, we can sample the emission parameter

according to a Dirichlet distribution, which is a conjugate prior for the categorical dis-

tribution:

θc ∼ Dir(η, . . . , η), (4.13)

where the subscript c indicates the new mixture component. Thanks to the conjugate

prior, the emission parameters can be updated by sampling its Dirichlet posterior distri-

bution:

θ′c ∼ Dir(η +N1
c , . . . , η +NK

c ), (4.14)

where Nk
c indicates the number of times the observed label k has been associated with

the latent state c, i.e., N c
k =

∑
u I[qu = c ∧ xu = k].

Gaussian Emission Similarly to the categorical case, let the emission distribution be

an univariate Gaussian. In this case, for each new state, we can sample the emission

parameter according to a Normal-Gamma distribution:

µc ∼ N (µ0, 1/(λ0τc)) (4.15)

τc ∼ Gamma(a0, b0), (4.16)

where the subscript c indicates a mixture component ant τc is the inverse of the variance.

Then, the emission parameters of the Gaussian can be updated as follows:

µ′c ∼ N
(
λ0µ0 +Ncx̄c
λ0 +Nc

,
1

(λ0 +Nc)τ ′c

)
(4.17)

τ ′c ∼ Gamma
(
a0 +

Nc

2
, b0 +

1

2

(
Ncsc +

λ0Nc(x̄c − µ0)2

λ0 +Nc

))
, (4.18)

where Nc indicates the number of observed labels associated with the latent state c

(i.e., Nc =
∑

u I[qu = c]), x̄c is the mean of the data associated with the class c (i.e.,

x̄c = 1
Nc

∑
∀u|qu=c xu), and sc is the variance of the data associated with the class c (i.e.,

sc = 1
Nc

∑
∀u|qu=c(xu − x̄u)2).
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Sampling α0 and γ

Following [24], the concentration parameter α0 and γ can be updated between Gibbs

sampling iterations by exploiting an auxiliary variable schema. Let us start with the

former, by assuming that α0 has a Gamma prior distribution Gamma(a, rate = b) (i.e.,

α0 ∼ Gamma(a, b)). Then, we define the auxiliary variables w1, . . . , wC̄ and s1, . . . , sC̄ ,

where each wj variable takes a value between 0 and 1, and each sj is a binary variable.

Then, the value of α0 can be sampled according to the following schema:

wj ∼ Beta(α0 + 1, nj.), (4.19)

sj ∼ Bernoulli
(

nj.
nj. + α0

)
, (4.20)

α0 ∼ Gamma

a+m.. −
C̄∑
j=1

sj , b−
C̄∑
j=1

logwj

 , (4.21)

where nj. is the number of costumer eating in the j-th restaurant, and m.. is the total

number of tables in all the restaurants.

Similarly, assuming that the hyper-parameter γ has a gamma prior distribution, i.e.,

γ ∼ Gamma(a′, b′), then its value can be updated by following the auxiliary variable

schema below [24, 242]:

r ∼ Beta(γ + 1,m..), (4.22)

p ∼ Bernoulli
(

m..

m.. + γ

)
, (4.23)

γ ∼ Gamma(a′ + C − p, b′ − log r). (4.24)

After training for a number of Gibbs sampling iterations, we predict the latent states

for unseen data points by simply applying Equation 4.9, where all the statistics, e.g.,

njc ∀j, c, have been stored after training and never updated again.

To facilitate the practical understanding of our model, Algorithm 4 provides the pseu-

docode of the Gibbs sampling method employed by iCGMM.

4.3.3 Faster Inference with Vertex Batches

Due to the sequential nature of the above inference process, a naive implementation is

slow when applied to the larger social graphs considered in this thesis. In the literature,

there exist several exact distributed inference methods for the HDP [243–246]), but their

effectiveness might be limited due to the unbalanced workload among workers or the
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Algorithm 4 Gibbs sampling method for exact iCGMM
Require: A dataset of graphs D = {g1, . . . , gN}. Initialize C = 1, θ = {θ1} (where θ1 ∼ H),
Tj = ∅ (for all groups j), q = t = c = ⊥, and n = ñ = 0.
repeat

for g ∈ D do . For each graph
for u ∈ Vg do . For each vertex

// assign the group
ju ← ψ(qNu

) . Can be done once ∀u
// assign the dish
njuqu ← njuqu − 1 . If qu 6= ⊥, remove qu from the counting
qu ← SAMPLING(ju,n,θ,x,β, α0) . Sample the dish according to Eq. 4.9
if qu is new then . Create a new state

θnew ∼ H
θ ← θ ∪ {θnew}
C ← C + 1
njqu ← 0 ∀j ∈ {1, . . . , C̄} . Initialize the counters

end if
njuqu ← njuqu + 1 . Update the counter

// assign the table
ñjutu ← ñjutu − 1 . If tu 6= ⊥, remove tu from the counting
tu ← SAMPLING(ju, qu, c, ñ,β, α0) . Sample the table according to Eq. 4.10
if tu is new then . Create a new table
Tj ← Tj ∪ {tu}
cjutu ← qu . Save the dish-table assignment
mjuqu ← mjuqu + 1 . Update the table count
ñjutu ← 0 . Initialize customer counter

end if
ñjutu ← ñjutu + 1

end for
end for

// remove unused dishes
for c ∈ {1, . . . , C} do

if
∑C̄

j=1 njc = 0 then . No customers eat the dish c
θ ← θ \ {θc}
C ← C − 1

end if
end for

// remove empty tables
for j ∈ {1, . . . , C̄} do

for t ∈ Tj do
if ñjt = 0 then . No customers eat at the table t in the restaurant j
Tj ← Tj \ {t}
mjcjt ← mjcjt − 1

end if
end for

end for

// update model parameters
β ← SAMPLING(q,m) . Sample according to Eq. 4.11
θ ← SAMPLING(q,x) . Sample according to Eq. 4.12

if iCGMMauto then
α0 ← SAMPLING(a, b,n) . Sample according to Eq. (4.19), (4.20), (4.21)
γ ← SAMPLING(a′, b′,m) . Sample according to Eq. (4.22), (4.23), (4.24)

end if
until stopping criteria
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elevated rejection rate [247]. Similarly, there are variational inference approximations

[237–240] that substantially differ from the approach taken here, but their investigation

will be subject of future works.

We prefer to speed-up the inference procedure by introducing a straightforward heuris-

tic rather than relying on an exact distributed computation. As suggested in [247], an

approximated inference procedure may indeed suffice for many problems, so what we pro-

pose is to perform sampling for a batch of vertex observations altogether. This way, the

necessary statistics are updated in batch rather than individually, and matrix operations

can be used to gain efficiency.

To keep the quality of the approximation as close as possible to the original Gibbs Sam-

pling algorithm, we choose 1 graph as the size of the batch. Such a trade-off provides

a CPU speedup of up to 60× at training time, and we empirically observed that per-

formances remain unchanged w.r.t. the original version on the smaller chemical tasks

considered so far. While this faster version of iCGMM, which we call iCGMMf , does

not strictly adhere to the technical specifications of the previous Section, we believe that

the pros largely outperform the cons. Table 4.12 reports the speedup gains on some tasks

by comparing the same configurations.

iCGMM iCGMMf

ref. min/max

C
h
em

. D&D 1× 17.8×/30.8×
NCI1 1× 3.1×/5.1×
PROTEINS 1× 4.2×/5.7×

S
o
c
ia

l

IMDB-B 1× 2.4×/5.1×
IMDB-M 1× 1.6×/3.6×
REDDIT-B 1× 11.1×/45.6×
REDDIT-5K 1× 36.7×/60.6×
COLLAB 1× 3.1×/8.6×

Table 4.12: Approximate minimum and maximum speedup across different configu-
rations between the exact iCGMM and the faster version of iCGMM.

4.3.4 Limitations

It should be clear by now that, due to the complexity of the BNP treatment, one limi-

tation is that naive Gibbs sampling does not scale easily to very large datasets. Yet, the

vertex independence assumption made by CGMM enables a faster batch computation,

which can also be run on a GPU.
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The second limitation of iCGMM is that edge features are not taken into account,

differently from CGMM and E-CGMM. One of our research directions for the future

will be to investigate a potential extension of iCGMM to discrete edge features, perhaps

by still using the SP variables in a fully Bayesian fashion.

4.3.5 Experimental Setting

Similarly to the previous models, we evaluated the performances of iCGMM using the

fair, robust, and reproducible evaluation setup for graph classification defined in Section

3.3. We first tested the “exact” and faster Gibbs sampling versions of iCGMM on the

three chemical datasets D&D, NCI1, and PROTEINS. When considering social datasets,

instead, we only evaluated iCGMMf due to its speedup on larger graphs.4

We have discussed how iCGMM can automatize the choice its hyper-parameters, e.g., the

size of the latent representation. In general, the choice of the Bayesian hyper-parameters

is much less important than that of the number of states C, as in principle one can

recursively introduce hyper-priors over these hyper-parameters [248, 249]. That said,

since this is the first work to study HDP methods in the context of graph classifica-

tion, we both i) explored the hyper-parameter space to best assess and characterize the

behaviour of the model and ii) introduced hyper-priors to estimate α0 and γ at each

layer, thus further reducing the need for an extensive model selection. For the chemical

tasks, the prior H over the emission parameters θc was the uniform Dirichlet distribu-

tion. The range of iCGMM hyper-parameters tried in this case were: number of layers

∈ {5, 10, 15, 20}, α0 ∈ {1, 5}, γ ∈ {1, 2, 3}, unibigram aggregation ∈ {sum,mean}, and
Gibbs sampling iterations ∈ {10, 20, 50}. Instead, for the social tasks we implemented

a Normal-Gamma prior H over a Gaussian distribution. Here the prior is parametrized

by the following hyper-priors: µ0, the mean vertex degree extracted from the data; λ0,

which is inversely proportional to the prior variance of the mean; and (a0, b0), whose ra-

tio t = b0
a0

represents the expected variance of the data. The iCGMM hyper-parameters

here were: number of layers ∈ {5, 10, 15, 20}, λ0 ∈ {1e-6}, a0 ∈ {1.}, b0 ∈ {0.09, 1.},
α0 ∈ {1, 5, 10}, γ ∈ {2, 5, 10}, unibigram aggregation {sum,mean}, and Gibbs Sam-

pling iterations ∈ {100}. To further automate learning of iCGMM’s unsupervised lay-

ers, we place uninformative Gamma(1, rate = 0.01) hyper-priors on both α`0, γ` hyper-

parameters. To prevent the model from getting stuck in a local minimum on COLLAB

(due to bimodal degree distribution and large variances), we tried λ0 ∈ {1e-4, 1e-5}.

To conclude, we list the hyper-parameters tried for the one-layer MLP classifier trained

on the unsupervised graph embeddings: optimizer ∈ {Adam}, batch size ∈ {32}, hidden
4https://github.com/diningphil/iCGMM.

https://github.com/diningphil/iCGMM
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D&D NCI1 PROTEINS

Baseline 78.4± 4.5 69.8± 2.2 75.8± 3.7
DGCNN 76.6± 4.3 76.4± 1.7 72.9± 3.5
DiffPool 75.0± 3.5 76.9± 1.9 73.7± 3.5
ECC 72.6± 4.1 76.2± 1.4 72.3± 3.4
GIN 75.3± 2.9 80.0± 1.4 73.3± 4.0
GraphSAGE 72.9± 2.0 76.0± 1.8 73.0± 4.5
CGMM 74.9± 3.4 76.2± 2.0 74.0± 3.9
E-CGMM 73.9± 4.1 78.5± 1.7 73.3± 4.1

iCGMM 75.6± 4.3 76.5± 1.8 72.7± 3.4
iCGMMf 75.0± 5.6 76.7± 1.7 73.3± 2.9
iCGMMauto 76.3± 5.6 77.6± 1.5 73.1± 3.9
iCGMMfauto 75.1± 3.8 76.4± 1.4 73.2± 3.9

Table 4.13: Results on chemical datasets (mean accuracy and standard deviation)
are shown. The best performances are highlighted in bold.

units ∈ {32, 128}, learning rate ∈ {1e-3}, L2 regularization ∈ {0., 5e-4}, epochs ∈ {2000},
ReLU activation, and early stopping on validation accuracy with patience 300 on chemical

tasks and 100 on social ones.

4.3.6 Results

The empirical results on chemical and social benchmarks are reported in Tables 4.13

and 4.14, respectively. There are several observations to be made, starting with the

chemical tasks. First of all, iCGMM performs similarly to CGMM, E-CGMM, and

most of the supervised neural models; this suggests that the selection of ju based on the

neighboring recommendations is a subtle but effective form of information propagation

between the vertices of the graph. In addition, results indicate that we have succeeded in

effectively automatizing the choice of the number of latent states without compromising

the accuracy, which was the main goal of this work. Finally, iCGMMf performs as well

as the exact version, and for this reason we safely applied the faster variant to the larger

social datasets (including IMDB-B and IMDB-M to ease the exposition).

Moving to the social datasets, we observe that iCGMM achieves better average perfor-

mances than other methods on IMDB-B, REDDIT-B and COLLAB. One possible reason

for such an improvement with respect to CGMM variants may be how the emission dis-

tributions are initialized. On the one hand, and differently from the chemical tasks,

CGMM and E-CGMM use the k-means algorithm (with fixed k=C), to initialize the

mean values of the C Gaussian distributions, which can be stuck in a local minimum

around the most frequent degree values. One the other hand, iCGMM adopts a fully

Bayesian treatment, which combined with the automatic selection of the latent states

allows to better model outliers by adding a new state when the posterior probability of

a data point is too low.
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IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

Baseline 70.8± 5.0 49.1± 3.5 82.2± 3.0 52.2± 1.5 70.2± 1.5
DGCNN 69.2± 3.0 45.6± 3.4 87.8± 2.5 49.2± 1.2 71.2± 1.9
DiffPool 68.4± 3.3 45.6± 3.4 89.1± 1.6 53.8± 1.4 68.9± 2.0
ECC 67.7± 2.8 43.5± 3.1 - - -
GIN 71.2± 3.9 48.5± 3.3 89.9± 1.9 56.1± 1.7 75.6± 2.3
GraphSAGE 68.8± 4.5 47.6± 3.5 84.3± 1.9 50.0± 1.3 73.9± 1.7
CGMM 72.7± 3.6 47.5± 3.9 88.1± 1.9 52.4± 2.2 77.32± 2.2
E-CGMM 70.7± 3.8 48.3± 4.1 89.5± 1.3 53.7± 1.0 77.45± 2.3

iCGMMf 73.0 ± 4.3 48.6± 3.4 91.3± 1.8 55.5± 1.9 78.6± 2.8
iCGMMfauto 71.8± 4.4 49.0± 3.8 91.6± 2.1 55.6± 1.7 78.9± 1.7

Table 4.14: Results on social datasets (mean accuracy and standard deviation) are
shown, where the vertex degree is used as the only vertex feature. The best perfor-

mances are highlighted in bold.

Similarly to the analysis done earlier for CGMM, we will try to shed more light into the

improved generalization performances of iCGMM, by analyzing the exact model from a

layer-wise perspective.
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Figure 4.11: Figures 4.11(a) and 4.11(b) analyze the relation between depth, perfor-
mances, and the number of chosen states on NCI1.

On the effectiveness of depth and hyper-parameters

To confirm our intuition about the benefits of the proposed information propagation

mechanism, Figure 4.11(a) shows the NCI1 training and validation performances of both

CGMM and iCGMM as we add more layers. For simplicity, we picked the best iCGMM

configuration on the first external fold, and we compared it against the CGMM config-

uration with the most similar performances. Note that C = 20 was the most frequent

choice of CGMM states by the best model configurations across the 10 outer folds: this

is because having more emission distributions to choose from allows the CGMM model

to find better local minima, whereas iCGMM can automatically add states whenever

the data point’s sampling probabilities are too low. We trained the same classifier at
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(b) Cumulative graph embedding size on NCI1

Figure 4.12: We show comparative results on the size and quality of graph embeddings
between CGMM and iCGMM. Overall, iCGMM generates ≈ 0 unused latent states,
with consequent savings in terms of memory and compute time of the classifier with

respect to CGMM. See the text for more details.

different depths, and we averaged scores across the 10 outer folds. The validation per-

formance of both models are similar, with an asymptotic behavior as we reach 20 layers;

hence, depth remains fundamental to improve the generalization performances [7]. Im-

portantly, we see that gap between iCGMM training and validation scores is thinner

than its non-BNP counterpart, suggesting that there is less overfitting of the data.

We now study how iCGMM behaves as we vary the main hyper-parameters α0 and γ.

We continue our experimentation on NCI1; Figure 4.11(b) depicts the average validation

performance and number of states C over all configurations and folds, subject to changes

of α0 and γ values. The trend indicates how greater values for both hyper-parameters

achieve, on average, better validation performance. Also, smaller values of the two

hyper-parameters tend to strongly regularize the model by creating fewer states, with

consequent reduction in validation accuracy.

On the quality of graph embeddings

So far, we have argued that iCGMM selects the appropriate number of states for its un-

supervised task at each layer. As a matter of fact, Figure 4.12(a) reports such a statistic

on the same NCI1 configuration as before: iCGMM preferred a lower number of latent

states than CGMM, i.e., around 5 per layer.In turn, the resulting graph embeddings

become much smaller, with important savings in terms of memory footprint and compu-

tational costs to train the subsequent classifier. Figure 4.12(b) displays the cumulative

graph embedding size across layers, using the unibigram representation without loss of

generality. We see that, when compared with CGMM (C=20), the size of graph embed-

dings produced by iCGMM is approximately 7% of those of the original model, while

still preserving the same performance as CGMM.
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On the automatic estimation of α` and γ`

We conclude this work with a performance analysis of the fully automated versions of

iCGMM and iCGMMf , namely those with an “auto” subscript in Tables 4.13 and 4.14;

in particular, we observe no statistically significant performance differences with respect

to the original models. By estimating all hyper-parameters of our models using un-

informative priors, we almost always (but for COLLAB) managed to avoid the model

selection for the unsupervised graph embeddings creation. In turn, this amounted to a

6× reduction in the overall number of configurations to be tried, but most importantly it

frees the user from making hard choices about which configurations of hyper-parameters

to try. Also, we observe that the number of chosen states and the consequent graph

embedding size is very similar to that of iCGMM with α0 = 5, γ = 3, but this time the

two hyper-parameters have been estimated by the model on the basis of the data.

4.3.7 Summary

The Infinite Contextual Graph Markov model is the last methodological contribution of

the chapter. We have shown how to bridge the two distant fields of Bayesian nonpara-

metrics and deep learning for graphs in order to build a DBGN whose complexity grows

with the data. iCGMM has demonstrated very competitive performances with respect

to the (supervised) state of the art, thanks to an information propagation mechanism

that is inspired from the concepts of Chapter 3 but adapted to work with HDPs. Not

only does this model automatically select the number of hidden states for each layer,

but we can also estimate almost all hyper-parameters at each layer using uninformative

hyper-priors. In turn, we can get lower memory and computational footprints without

sacrificing the overall predictive performances, at least in the tasks studied so far.

It still remains to be seen whether or not more complex aggregation mechanisms could be

applicable to iCGMM. Our attempts at choosing the group j for each observation in a

stochastic way, i.e., by sampling from the macro-state distribution at each Gibbs sampling

iteration, failed to converge or performed poorly. Moreover, there is the necessity to

scale up to larger graphs, which may be achieved by distributed Gibbs sampling or

variational inference procedures. We leave these interesting directions to future works,

confident that the cross-fertilization of ideas between different fields will further enhance

the representational power of Deep Bayesian Graph Networks.
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4.4 Application to Malware Classification [11]

To conclude the chapter, we tackle a real-world malware classification problem using the

DBGNs introduced so far [11]. The task of detecting malicious behavior using static

analysis is indeed one fundamental process to protect devices, networks and users’ per-

sonal data. By looking at how the program is written, we want to automatically find

patterns that allow us to distinguish whether a program is to be trusted or belongs to a

specific malware family.

As anti-malware companies become better at finding known patterns, so do malware

writers that rely on obfuscation techniques to elude common pattern checks. There are

two main categories of obfuscation: intra-procedural, i.e., it modifies procedural code

without changing the interaction with the rest of the program, or inter-procedural, i.e.,

it alters the structure of the program by also adding call or invoke statements. While the

latter is certainly more difficult to detect, it is also much more delicate to use as some

mechanisms (e.g., call-return and parameter passing) may rely on information known

only at run-time and can introduce concurrency problems.

Intra-procedural techniques are widely used and suffice to fool a number of static code

analysis tools [250]. Recent works test their approaches on the most common obfuscation

techniques [251] or group them by their magnitude of edits on the code [252]. In this

context, we investigate the problem of malware classification using DBGNs, where the

program is represented as aCall Graph (CG), i.e., a graph where vertices are procedures

and edges denote calls to other procedures. Differently from the literature, we consider

obfuscation techniques based on their influence on the CG topology.

Many non-adaptive malware detection solutions based on CGs exploit graph-signatures,

similarity algorithms and graph-kernels [253–255]. In conjunction with formal methods,

these approaches achieve excellent accuracy, but the analysis is time-consuming and re-

quires domain-level expertise for the temporal logic formulas generation [256]. Instead,

most machine learning approaches are generally more efficient and rely on static analy-

sis features included in the graphs, such as opcodes frequencies [257] and control/data

dependencies [258], some of which are easily vulnerable to intra-procedural obfuscation.

Our contribution, apart from showing a practical application of the methodologies in-

troduced so far, is to propose a malware classification method based solely on the CG

topology. This way, it is possible to show that the approach is intrinsically robust to

intra-procedural obfuscation techniques. We exploit CGMM, E-CGMM, and iCGMM

to construct CG embeddings that are then fed to a machine learning classifier. Note

that, while methods exist to certify robustness of DGNs to vertex perturbations [100],

our approach does not need such certificates as it only focuses on the structure.
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4.4.1 Methodology

We sketch the overall methodology in Figure 4.13. Assuming we have a CG dataset, we

employ an unsupervised DBGN to generate graph embeddings encoding CG structural

information. We already know from the previous sections that, to enable learning with

Static Analysis DBGN Classifier

3
1

2 1

2

0

APK

hg

Figure 4.13: Given an Android Application Package (APK) , we apply static analysis
to construct a CG, where vertices represent methods and arrows denote how methods
are intertwined. For our purposes, the sole vertex feature we use is the out-degree of
each vertex. Then, the CGMM model transforms the input graph into an embedding

that is used for the final classification.

the current DBGNs, vertex features are essential. To avoid relying on features vulnerable

to intra-obfuscation, we choose the out-degree of each vertex, which encodes how many

calls are made by the caller. Therefore, the emission distribution P (xu|Qu = i) will be

a univariate Gaussian. Clearly, using the degree feature is just one the possible choices,

but it proved to be quite effective so far.

It is worth that the unsupervised training can significantly accelerate the model selection

phase, since graph embeddings need be computed only once and the downstream classifier

works on simple vectors. Also, the final graph embedding is (again) the concatenation of

the aggregated vertex/edge posteriors produced at each layer of the DBGNs developed

in this thesis.

4.4.2 Experimental Setting

We now describe how we converted a set of Android applications, i.e., .apk files, into

a CG dataset; nevertheless, provided a static analysis tool is available, it is straightfor-

ward to apply this methodology to other environments as well. First, of all, each .apk

file is decompressed and the Java bytecode is decompiled into Jimple, an intermediate

representation language, using the Soot Framework [259]. During decompilation, the

code is analyzed to generate a CG5, where vertices represent methods, i.e., a procedure

or function construct, and directed edges denote calls from caller to called vertices,

i.e., when an invoke or call statement is present in the method. Our analysis only con-

siders methods in the application packages, thus discarding calls to library functions
5Soot transformation: https://github.com/Djack1010/graph4apk.

https://github.com/Djack1010/graph4apk
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or external packages. Notably, the generated CGs do not contain information about

the methods statements, e.g., variables, declaration, and dependencies, on the vertices;

instead, as already mentioned, we add the out-degree as the sole vertex feature to be

able to train the probabilistic models. Hence, our methodology is intrinsically robust

to intra-procedural obfuscations techniques, such as code reordering/removal, junk code

insertion, instruction substitution, control flow modifications, identifiers and variables

renaming/encryption, and repacking [250]. Indeed, these obfuscation techniques modify

each method’s statements but they do not alter the number of invoke or call statements,

i.e., the initial CG is exactly the same as any intra-procedurally obfuscated CG.

Malware samples were collected from the AMD and previous work datasets [260], and

the benign samples were downloaded from Google Play. Both the malware and the

trusted applications were verified with VirusTotal, to ensure either their maliciousness

or trustiness. The resulting dataset consists of 5669 samples of real-world malware,

split into 8 classes, where one represents the trusted software (1762 samples) and the

others stand for different malware families, namely Airpush (736 samples), Dowgin (1040

samples), FakeInst (190 samples), Kuguo (879 samples), Youmi (959 samples), Fusob (73

samples), and Mecor (30 samples). Dataset statistics are described in Table 4.15.

# Graphs # Classes Avg |Vg| Avg |Eg| Min Degree Max Degree Avg Degree
5669 8 5069 3267 0 618 0.58

Table 4.15: Dataset statistics. Graphs are large but sparse, and the average out-
degree is low because all calls to external libraries have been removed from the CG.

To assess the performance of the DBGNs on our CG dataset, we split the data according

to a stratified hold-out strategy, with 80% of the data for training, 10% for validation and

10% for test.6 To empirically evaluate the impact of the structure in the dataset, we follow

Section 3.3 and introduce a structure-agnostic baseline. The baseline applies an MLP to

the vertex features, performs global aggregation and then applies a linear output layer.

We performed grid-search model selection for all models, with early stopping monitoring

the classification accuracy.

The hyper-parameters tried for the baseline were: hidden units ∈ {32,64,128}, 2000

epochs, batch size 128, global aggregation ∈ {sum, mean}, Adam Optimizer with learning

rate ∈ {0.01, 0.001}, patience ∈ {50}. As regards CGMM, instead, we selected the best

model across the following configurations: 20 states, layers ∈ {10, 20}, 10 EM epochs,

posterior version ∈ {discrete, continuous}, embedding version ∈ {unigram, unibigram},

global aggregation ∈ {sum, mean}, batch size 64, 2000 epochs, hidden units ∈ {32,64,256,

512}, Adam Optimizer with learning rate ∈ {0.0001} and weight decay ∈ {0., 0.0005},
6https://github.com/diningphil/robust-call-graph-malware-detection.

https://github.com/diningphil/robust-call-graph-malware-detection
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TR Loss TR Acc. VL Loss VL Acc. TE Loss TE Acc.
Baseline 1.2±0.05 55.6±0.5 1.1±0.01 60.6±0.9 1.1±0.03 56.7±0.5

CGMM 0.01±0.01 99.8±0.4 0.16±0.01 97.9±0.2 0.13±0.01 96.4±0.6

E-CGMM 0.03±0.02 99.4±0.6 0.59±0.003 98.4±0.3 0.19±0.02 97.3±0.4

iCGMMf 0.05±0.01 98.7±0.5 0.27±0.04 94.8±0.5 0.35±0.03 93.6±0.6

iCGMMfauto
0.07±0.03 97.93±0.9 0.25±0.02 95, 8±0.5 0.42±0.1 92.7±0.5

Table 4.16: Malware classification results (mean and standard deviation) on training
(TR), validation (VL) and test (TE) sets. We display both the Cross-Entropy loss as

well as the multi-class accuracy. Results are averaged over 3 final runs.

and patience 100. E-CGMM shares the same hyper-parameters’ set but for CE in {5, 10}.
Finally, we tried the same iCGMMf and iCGMMfauto embedding configurations of

Section 4.3.5 (but for λ0 ∈ {1e-4,1e-5}), with the µ0 being set to 0.58, i.e., the empirical

mean out-degree of the dataset. However, we used the same classifier’s configurations as

the two models above.

4.4.3 Results
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Figure 4.14: Row-normalized confusion matrix of CGMM computed on the test set.

Results are shown in Table 4.16. As we can see, the structural variability in the dataset

is such that a structure-agnostic baseline cannot accurately classify instances by merely

looking at the out-degree statistics of the graph. Instead, the three DBGNs are able to

extract structural patterns that allow the subsequent classifier to achieve a very good ac-

curacy on the test set (and Macro F1 score of approximately 97% for the best performing

solution). Here, it seems that the configurations tried for iCGMMf and iCGMMfauto

led to a slight underfitting w.r.t. the other two models, which is probably due to the cho-

sen ranges of hyper-parameters and hyper-priors for the peculiar out-degree distribution

of the dataset.
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These results support our knowledge that different malware families share detectable

topological similarities and hence our hypothesis on the robustness of the approach to

intra-procedural obfuscations. In fact, we were able to accurately detect such similarities

without relying on non-adaptive procedures, domain expertise, and static analysis’ vertex

features that are susceptible to obfuscation techniques. In addition, the confusion matrix

of Figure 4.14 shows how accuracy does not decrease for the most imbalanced classes,

e.g., Fusob and Mecor. Rather, the classifier achieves perfect classification on those

test samples. Finally, to empirically confirm that the proposed approach is robust to

intra-procedural obfuscation methods, we also performed inference with CGMM on an

obfuscated subset of test malwares (261 out of 391, due to intrinsic difficulties in the

process, e.g., sometimes the obfuscated code did not compile) using the Code Reordering

and Junk Code techniques in [250]. CGMM achieved a 99.6% accuracy.

4.5 Summary

We have introduced Deep Bayesian Graph Networks, a probabilistic alternative to Deep

Neural Graph Networks to extract information from graphs of varying size and topology.

Throughout the chapter, we have shown how it is possible to formalize the main building

blocks of Deep Graph Networks using the well known tools of Bayesian inference. Our

contributions rely on an incremental construction to break the mutual (and possibly

cyclic) dependencies between latent variables associated with vertices, and the quality of

the unsupervised embeddings is such that we managed to compete with state of the art

supervised DNGNs on classification and regression tasks.

It may be worth mentioning that the probabilistic framework presented in this thesis

is general enough to be extended in many ways, from the development of a “supervised

CGMM” to the introduction of attention and more general aggregation mechanisms.

In a sense, E-CGMM and iCGMM are examples of architectural and Bayesian non-

parametric extensions of the basic CGMM, respectively, but it is not difficult to imagine

variations of the graphical model that take advantage of variational bounds or automatic

estimation of other hyper-parameters.

What is more, we still have to investigate the scenario in which DBGNs should excel at,

namely pre-training of vertex/graph embeddings on a huge amount of unlabelled raw

data. This was mainly due to the absence of large datasets which, however, are becoming

more and more available these days [198].



Chapter 5

Graph Mixture Density Networks

La faccia sua era faccia d’uom giusto,
tanto benigna avea di fuor la pelle,
e d’un serpente tutto l’altro fusto;

Inferno - Canto XVII

In this final methodological chapter, we aim at building a hybrid model that gets the

best of the two worlds presented so far, namely neural and Bayesian networks, in the

context of deep learning for graphs. More specifically, our contribution is motivated by

the need of modeling multimodal output distributions conditioned on topologically vary-

ing graphs: in this respect, we are extending the Mixture Density Network model to the

processing of structured-data. What we call Graph Mixture Density Network (GMDN)

[9] is basically the combination of a graph encoder, e.g., a DGN, and yet another condi-

tional mixture model. This time, however, the overall architecture is a feedforward (but

not constructive) DNGN. We shall present practical reasons as to why such a model is

necessary, and we will formalize learning withing the framework of Generalized Expec-

tation Maximization. A GMDN is particularly suited to express uncertainty about the

possible continuous output values associated with an input graph. GMDN can tackle

predictions of stochastic events, like the final outcome of an epidemic given the initial

network, but it also can be applied to standard regression problems to better understand

the data at hand. We complement the discussion with an alternative way to solve link

prediction problems, using a measure of distance between two vertices’ multimodal dis-

tributions. All in all, we will see how GMDN can be a useful tool to i) better analyze

the data, as uncertainty usually arises from stochasticity, noise, or under-specification

of the system of interest, and ii) train Deep Graph Networks which can provide further

insights into their predictions and their trustworthiness.
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5.1 Motivations

In Section 2.1.3, we discussed how the classical assumptions we make in regression prob-

lems do not hold anymore when the output distribution is multimodal. The Mixture

Density Network [18] was designed to produce multimodal target distributions, but the

input data has to be of vectorial nature.

In terms of applications, MDNs have been recently applied to epidemic simulation pre-

diction [261]. The goal is to predict the multimodal distribution of the total number

of infected cases under a compartmental model such as the stochastic Susceptible-

Infectious-Recovered (SIR) model [262]. With SIR, each individual in the network can

be in one of the three states (S,I or R), and there are very simple update rules to tran-

sition from one state to another, depending on the connectivity of the network and two

parameters: i) infectivity β and ii) recovery γ. In the paper [261], the authors show that,

given samples of SIR simulations with different infectivity and recovery parameters, the

MDN could approximate the output distribution using a mixture of binomials. This re-

sult is a remarkable step in approximating way more complex compartmental models in

a fraction of the time originally required, similarly to what has been done, for example,

in material sciences [263] and molecular biosciences [10]. However, the work of [261]

makes the strong assumption that the infected network is a complete graph. In fact, as

stated in [264], arbitrary social interactions in the network play a fundamental role in

the spreading of a disease, so predictive models should be able to take the topology into

account [265].

Throughout this thesis, we had the chance to see that many real-world problems are

best solved with relational data, where the structure substantially impacts the possible

outcomes. For these reasons, we shall propose a hybrid approach to handle multimodal

target distributions conditioned on graphs, namely the Graph Mixture Density Network

(GMDN). This model can output distributions for either the whole structure or its

individual entities. We shall use the likelihood as a metric for this kind of conditional

density estimation tasks [266], since it tells us how well the model is fitting the empirical

data distribution. Overall, GMDN extends the capabilities of all DNGNs whose output

is restricted to unimodal distributions.
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5.2 Model Definition [9]

We aim to learn the conditional distribution P (yg|g), with yg being the continuous target

label(s) associated with an input graph g in the dataset D1. We assume the target

distribution to be multimodal, and as such it cannot be well modeled by current DGNs.

DGN

g hv

Qg

Φ1

ΦC

...

ΦQ

Figure 5.1: From a high-level perspective, we first obtain a state hv for each vertex
by applying an isomorphic transduction with a DGN encoder. Then, for each graph g,
a subsequent transformation ΦQ generates the mixing probability vector Qg ∈ [0, 1]C

that combines the C different distributions produced by the sub-networks Φ1, . . . ,ΦC .

As sketched in Figure 5.1, we seek a DGN that performs an isomorphic transduction

of the graph to obtain vertex representations hVg as well as a set of mixing weights

Qg ∈ [0, 1]C that sum to 1, where C is the number of unimodal output distributions

we want to mix. Given hVg , we then apply C different sub-networks Φ1, . . . ,ΦC that

produce the parameters θ1, . . . , θC of C output distributions, respectively.

In principle, we could mix distributions from different families, but this poses several

issues, such as finding a rationale for their choice and choosing how many of them to use

for each family. In light of these considerations, we stick to a single family for simplicity

of exposition. Finally, combining the C unimodal output distributions with the mixing

weights Qg produces a multimodal output distribution.

More formally, we learn the conditional distribution P (yg|g) using the Bayesian network

of Figure 5.2. We solve the CDE problem via maximum likelihood estimation, which

reflects the probability that an output y is generated from a graph g. Given an hypotheses

space H, we therefore seek the following hypothesis:

hMLE = arg max
h∈H

P (D|h) = argmax
h∈H

∏
g∈D

C∑
i=1

P (yg|Qg = i, g)P (Qg = i|g),

1Note that the process to output vertex-specific distributions is almost identical, with the exception
that global aggregation is not performed.
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Qg

Yg

G

hVg

g ∈ D
Figure 5.2: GMDN’s Bayesian network is almost identical to that of a Mixture
Density Network (see Figure 2.10), with the exception that the input observable has

distribution with support over graphs rather than flat data.

where we introduced the latent variable Qg via marginalization. We model the distri-

butions in the equation by means of DGNs, given that a graph g may have a variable

number of vertices and edges. In this respect, we choose the convolution of the Graph

Isomorphism Network (GIN) [109] in our experiments. Also, the final vertex representa-

tion hv is given by the concatenation of all L intermediate states, where L is the chosen

number of layers.

Since we care about producing a single graph-related distribution, representations hVg
have to be globally aggregated with a function Ψg

hg = rg(hVg) = Ψg

(
{fr(hv) | v ∈ Vg}

)
,

where fr could be a linear model or an MLP. Likewise, the mixing weights can be

computed using a function rQg as follows:

P (Qg|g) = σ(rQg (hVg)),

where σ is the softmax over the components of the aggregated vector.

To learn the emission P (yg|Qig, g), i = 1, . . . , C, we have to implement a sub-network Φi

that outputs the parameters of the chosen distribution. For instance, if the distribution

was a multivariate Gaussian, we would have

µi,Σi = Φi(hg) = fi(r
i
g(hVg)),
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with fi being defined as fr above. Note that vertex-prediction tasks do not need a

global aggregation phase, so the mixing weights and emission transformations would be

individually applied to hv ∀v ∈ Vg.

It is important to remark that we share hVg between all sub-networks; this is different

from the so-called Mixture of Experts approach [267, 268], in which a different set of

vertex representations would be created for each sub-network. This form of weight shar-

ing reduces the number of parameters and pushes the model to extract all the relevant

structural information into a single representation for each vertex. Last but not least,

using multiple DGN encoders can easily become computationally intractable for large

datasets.

5.3 Training

We train the GMDN model using the Expectation-Maximization (EM) framework [15]

for MLE estimation. We continue choosing EM for the local convergence guaranteees

that it offers with respect to other solutions, and since its effectiveness has already been

proved on the probabilistic graph models introduced so far. By introducing the usual

indicator variable zgi ∈ Z, which is one when Qg has latent state i, we can compute the

lower bound of the log-likelihood as in standard mixture models [268, 269]:

EZ|D[logLc(h|D)] =
∑
g∈D

C∑
i=1

E[zgi |D] log
(
P (yg|Qig, g)P (Qg|g)

)
(5.1)

where logLc(h|D) is the complete log likelihood.

The E-step of the EM algorithm can be performed analytically by computing the poste-

rior probability of the indicator variables:

E[zgi |D] = P (zgi = 1|g) =
1

Znorm
P (yg|Qig, g)P (Qg|g)

where Znorm is a normalization term obtained via marginalization. On the other hand,

we do not have closed-form solutions for the M-step because of the non-linear transfor-

mations Φ used. Hence, we perform a gradient ascent step to maximize Equation 5.1.

This is an instance of the GEM algorithm (Section 2.1.1.5), which still guarantees con-

vergence to a local minimum if each optimization step improves Equation 5.1. Finally,

we introduce an optional Dirichlet regularizer π with hyper-parameter α = (α1, . . . , αC)

on the distribution P (Qg|g). The prior distribution serves to prevent the posterior prob-

ability mass of the from collapsing onto a single state; this is a well-known problem

that has been addressed in the literature through specific constraints [270] or entropic
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regularization terms [271]. Eventually, the objective to be maximized becomes

EZ|D[logLc(h|D)]︸ ︷︷ ︸
original objective

+
∑
g∈D

log π(Qg|α)︸ ︷︷ ︸
Dirichlet regularizer

, (5.2)

where we note that α = 1C corresponds to a uniform prior, i.e., no regularization.

Maximizing Equation 5.2 still preserves the convergence guarantees of GEM if the original

objective increases at each step.

5.4 Encoding the structure via distribution distances

In the DGN literature, a common regularization technique encourages adjacent vertex

representations to be similar in the Euclidean space and dissimilar otherwise [70]. This

can be achieved by computing the dot product of pairs of vertex representations followed

by sigmoidal activation (to obtain a “probability” of being adjacent). Ideally, this regu-

larization term should help the model focus on structural patterns rather than overfitting

vertex features.

This way, however, the space of vertex representations is explicitly constrained, and we

argue that this may limit the amount of information that can be encoded into hVg about

the main classification/regression task. For this reason, we propose the first insights

into a GMDN-based technique that implicitly embeds structural information into vertex

representations. The idea to use GMDN to produce separate vertex distributions other

than those required for the main task. Then, we can encourage the distance between

pairs of such vertex distributions to be close if the vertices are indeed adjacent. For the

Data Processing Inequality [272], it follows that vertex representations obtained in this

way will encode structural information, but there will be no explicit constraint on the

space they live in.

While the application of this strategy to regularization seems promising, we should first

investigate whether it is actually possible to learn appropriate distribution distances that

encode the adjacency information. This thesis will take a step in this direction, rather

than focusing on regularization benefits, by analyzing the ability of different distance

functions to solve link prediction tasks. We graphically sketch the idea behind this

experiment in Figure 5.3.

In this context, mixtures of Gaussians prove useful, as there are many possible choices for

the distance function. An example is the closed-form L2 distance between two Gaussian

mixture distributions P and Q described in [273]. We define the L2 distance as
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hv

hu

hu

hv

φ(hu) φ(hv)

P ({u, v} ∈ Eg)

Figure 5.3: In explicit regularization (top), adjacent vertex representations must be
aligned in the Euclidean space. Instead, we propose to implicitly encode adjacency
information (bottom) into the representations hVg by minimizing the distance between

adjacent vertex distributions.

L2
2(P,Q) =

∫
R

(p(x)− q(x))2dx. (5.3)

This function sums the point-wise squared distances between the pdfs of the two dis-

tributions, and it is not difficult to implement in matrix form for univariate Gaussian

mixtures.

Lastly, mapping each vertex representation into a one-dimensional distribution could

also be used as a structure-aware dimensionality reduction technique, in contrast to

task-agnostic alternatives commonly used in the literature [274, 275].

We now describe how we implement the different distances between pairs of Gaussian

mixture distributions.

5.4.1 L2 Distance

This is the usual squared Euclidean distance

L2
2(P,Q) =

∫
R

(p(x)− q(x))2dx
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which, for mixture of distributions, can be written as2

L2
2(P,Q) =

∫
R

( C∑
i

αipi(x)−
C∑
j

βjqj(x)
)2
dx

=
∑
i,j

αiαj

∫
R
pi(x)pj(x)dx + βiβj

∫
R
qi(x)qj(x)dx

− 2
∑
i,j

αiβj

∫
R
pi(x)qj(x)dx,

where α and β are the mixture weight vectors of the two distributions. In general, we

can compute the integral of the product of two Gaussians as∫
R
N (x | µ1,Σ1)N (x | µ2,Σ2)dx = N (µ1 | µ2, (Σ1 + Σ2))

where we have used a known property of the product of Gaussians (see Section 8.1.8 of

[277]) and the fact that the integral of a density function sums to 1. Therefore, if we

define

Ai,j =

∫
R
pi(x)pj(x)dx = N (µPi | µPj , (σPi + σPj ))

Bi,j =

∫
R
qi(x)qj(x)dx = N (µQi | µ

Q
j , (σ

Q
i + σQj ))

Ci,j =

∫
R
pi(x)qj(x)dx = N (µPi | µQj , (σPi + σQj ))

then the Euclidean distance can be computed as

L2
2(P,Q) =

∑
i,j

αiαjAi,j + βiβjBi,j − 2
∑
i,j

αiβjCi,j .

5.4.2 Jeffrey’s Distance

The Jeffrey’s distance can be thought as the symmetric version of the KL Divergence

or, equivalently, as double the α-JS divergence with α = 1. We use the α-JS divergence

implementation, though the difference w.r.t. Jeffrey’s lies only in a constant value. We

consider a weighted sum of C distances (univariate case) that relies on the corresponding
2We follow the straightforward derivation of [276].
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mixing weights:

Jw(P,Q) =
1

2

C∑
i=1

wPi KL(Pi || Qi) + wQi KL(Qi || Pi)

where KL(P || Q) = log
σQ
σP

+
σQP + (µP − µQ)2

2σ2
Q

− 1

2
.

5.4.3 Bhattacharyya’s Distance

Similarly, we define the weighted sum of Bhattacharyya’s distances (univariate case) as

Bw(P,Q) =
C∑
i=1

∫
R

√
(wPi pi(x)wQi qi(x))dx

=

C∑
i=1

√
wPi w

Q
i

∫
R

√
pi(x)qi(x)dx

=
C∑
i=1

√
wPi w

Q
i

(1

8

2(µP − µQ)2

σ1 + σ2
+

1

2
log(

σP + σQ
2
√
σPσQ

)
)
.

5.5 Experiments

We now describe the datasets, experiments, evaluation process and hyper-parameters

used to empirically study GMDN. Our goal is to show how GMDN can fit multimodal

distributions conditioned on a graph better than using MDNs or DGNs individually. To

do so, we publicly release large datasets of stochastic SIR simulations whose results de-

pend on the underlying network, rather than assuming uniformly distributed connections

as in [261]. The datasets have been generated using random graphs from the Barabasi-

Albert (BA) and Erdos-Renyi (ER) families. While ER graphs do not preserve social

networks’ properties, here we are just interested in the emergence of multimodal outcome

distributions rather than biological plausibility. That said, future investigation will cover

more realistic cases, for instance using the Block Two-Level Erdos–Renyi model [278].

We also apply the model on two molecular graph regression benchmarks, to analyze the

performances of GMDN on real-world data.

Two additional experiments complement the exposition: first, we analyze whether train-

ing on a particular family of graphs exhibits transfer properties; if that is the case,

then the model has learned how to make informed predictions about different (let alone

completely new) structures. Secondly, we study whether we can use vertex-specific multi-

modal distribution to perform link prediction. We recall that the main goal is to decouple
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Figure 5.4: Given a single network and specific choices for R0 = β/γ, the repeated
simulation of the stochastic SIR model is known to produce different outcomes. Here we
plot the outcome distributions of 1000 SIR simulations on an Erdos-Renyi network of
size 200. We follow [261] and sample β and γ uniformly, rather than their ratio, because
higher ratios correspond to less interesting behaviors, i.e., the distribution becomes
unimodal. Depending on the input structure, the distribution of the total infected
cases may be multimodal or not, and GMDN should recognize this phenomenon. In
our simulations, larger networks exhibited less multimodality; hence, without loss of

generality, we focus on larger datasets of smaller graphs.

the role of vertex representations from the objects used to compute the pair-wise link

prediction scores.3

5.5.1 Datasets

We simulated the well-known stochastic SIR epidemiological model on Barabasi-Albert

graphs of size 100 (BA-100), generating 100 random graphs for different connectivity

values (2, 5, 10 and 20). Borrowing ideas from [261], for each configuration, we run

100 simulations for each different initial infection probability (1%, 5%, 10%) sampling

the infectivity parameter β from [0, 1] and the recovery parameter γ from [0.1, 1]. We

also carry out simulations for Erdos-Renyi graphs (ER-100), this time with connectiv-

ity parameters 0.01, 0.05, 0.1, and 0.2. The resulting total number of simulations (i.e.,

samples) in each dataset is 120.000, and the goal is to predict the distribution of the
3https://github.com/diningphil/graph-mixture-density-networks.

https://github.com/diningphil/graph-mixture-density-networks
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total infected cases at the end of a simulation. Vertex features consist of β, γ, their ratio

R0 = β/γ, a constant value 1, and a binary value that indicates whether that vertex is

infected or not at the beginning of the simulation. Moreover, to test the transfer learning

capabilities of GMDN on graphs with different structural properties (according to the

chosen random graph model), we constructed six additional simulation datasets where

graphs have different sizes, i.e., 50, 200 and 500. An instance of simulation results is sum-

marized in Figure 5.4; we observe that the outcome distribution of repeated simulations

on a single graph leads to a multimodal distribution, in accord with [264]. Therefore, in

principle, being able to accurately and efficiently predict the outcome distribution of a

(possibly complex) epidemiological model can significantly impact the preparations for

an incumbent sanitary emergency.

When dealing with real-world graph regression tasks, especially in the chemical domain,

we usually do not expect such a conspicuous emergence of multimodality in the out-

put distribution. Indeed, the properties of each molecule are assumed to be regulated

by natural laws, but the information we possess about the input representation may

be incomplete and/or noisy. Similarly, the way the model processes the input has an

impact on the overall uncertainty; for instance, disregarding bond information makes

graphs appear isomorphic to the model while they are indeed not so. As such, knowing

the confidence of a trained regressor for a specific outcome becomes invaluable to better

understand the data, the model behavior, and, ultimately, to determine the trust we

place in each prediction. Therefore, we will evaluate our model on the large chemical

benchmarks alchemy_full [279] and ZINC_full [280, 281] made of 202579 and 249456

molecules, respectively. The task of both datasets is the prediction of continuous chem-

ical properties (12 for the former and 1 for the latter) associated with each molecule

representation (9 and 28 vertex features, respectively). As in [279], the GIN convolution

used only exploits the existence of a bond between atoms. In the considered datasets,

this gives rise to isomorphic representations of different molecules when bond types or

3D coordinates are not considered (or simply ignored by the trained model). The same

phenomena, in different contexts and forms, can occur whenever the original data or its

choice of representation lack part of the information to solve a task.

Finally, to start studying the feasibility of GMDN as a link predictor, we will make use

of the same Cora and Pubmed datasets introduced in the context of E-CGMM.

5.5.2 Evaluation Setup.

We assess the performance of different models using a holdout strategy for all datasets

(80%/10%/10% split). Given the size of the datasets, we believe that a simple holdout
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is sufficient to assess the performances of the different models considered. To make the

evaluation even more robust for the epidemic datasets, different simulations about the

same graph cannot appear in both training and test splits. The metric of interest is the

log-likelihood of the data (logL), which captures how well we can fit the target distri-

bution and the model’s uncertainty with respect to a particular output value. We also

report the Mean Average Error (MAE) on the real-world benchmarks for completeness.

However, the MAE does not reflect the model’s uncertainty about the output, as we will

show.

Instead, we split the links of Cora and Pubmed according to a bootstrap sampling tech-

nique. We created ten different 85%/5%/10% link splits with an equal number of true

(class 1) and false (class 0) edges. We recall that this setup is more robust than using

a single split [70, 177], but it is ten times more expensive because we must perform a

model selection for each split. We treat sampled false edges as directed for a better

exploration of the space of unconnected pairs of vertices. We use an L1 loss with target

distance 0 for the positive class and 2 for the negative class. When it comes to computing

classification scores, we convert each distance d into a probability using the continuous

function 1/(1 + d) (though hard thresholds are also possible). Following the literature,

we evaluate the classification performance using the area under the curve (AUC) and the

average precision (AP).

We perform model selection via grid search for all the models presented. For each of

them, we select the best configuration on the validation set using early stopping with

patience [196]. As regards holdout, to avoid an unlucky random initialization of the

chosen configuration, we average the model’s performance on the unseen test set over

ten final training runs. Instead, 3 final training runs are used for the link prediction

experiments. Similarly to the model selection phase, in all these final training runs we

use early stopping on a validation set extracted from the training set (10% of the training

data).

Baselines and hyper-parameters On the synthetic and chemical tasks, we compare

GMDN against four different baselines. First, RAND predicts the uniform probability

over the finite set of possible outcomes, thus providing the threshold log-likelihood score

above which predictions are useful. Instead, HIST computes the normalized frequency

histogram of the target values given the training data, which is then converted into

a discrete probability. While on epidemic simulations we can use the graph’s size as

the number of histogram bins to use, on the chemical benchmarks this number must

be treated as a hyper-parameter and manually cross-validated against the validation

set. HIST is used to test whether multimodality is useful when a model does not take
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the structure into account. Finally, we have MDN and DGN, which are, in a sense,

ablated versions of GMDN. Indeed, MDN ignores the input structure, whereas DGN

cannot model multimodality. Neural models are trained to output unimodal (DGN) or

multimodal (MDN, GMDN) binomial distributions for the epidemic simulation datasets

and isotropic Gaussians for the chemical ones. The sub-networks Φi are linear models,

and the graph convolutional layer is adapted from [109].

For link prediction, we test a Graph Auto-Encoder (GAE) [81] as a strong baseline that

computes the dot product between pairs of vertex representations. Then, we test dif-

ferent versions of GMDN according to the distributional distance used: L2 distance

(GMDN-L2), weighted Jeffrey distance (GMDN-J), and weighted Bhattacharyya dis-

tance (GMDN-B). We now list the hyper-parameters tried for each model:

• MDN: C ∈ {2,3,5}, hidden units per convolution ∈ {64}, neighborhood aggregation

∈ {sum}, global aggregation ∈ {sum, mean}, α ∈ {1C , 1.05C}, epochs ∈ {2500},

Φi ∈ {Linear model}, Adam Optimizer with learning rate ∈ {0.0001}, full batch,

patience ∈ {30}.

• GMDN: C ∈ {3,5}, number of layers ∈ {2,5,7}, hidden units per convolution ∈
{64}, neighborhood aggregation ∈ {sum}, global aggregation ∈ {sum, mean}, α

∈ {1C , 1.05C}, epochs ∈ {2500}, Φi ∈ {Linear model}, Adam Optimizer with

learning rate ∈ {0.0001}, full batch, patience ∈ {30}.

• DGN: same as GMDN but C ∈ {1} (that is, it outputs a unimodal distribution).

• GAE: number of layers ∈ {1,2,3}, hidden units per convolution ∈ {32, 64,128, 256, 512},
neighborhood aggregation ∈ {sum}, epochs ∈ {5000}, Adam Optimizer with learn-

ing rate ∈ {0.01, 0.001}, full batch, patience ∈ {1000}.

• GMDN-L2/J/B: C ∈ {2,5,10,20,30,50}, number of layers ∈ {1}4, hidden units per

convolution ∈ {128,256,512,1024}, neighborhood aggregation ∈ {sum, mean},α ∈
{1C}, epochs ∈ {2500}, Φi ∈ {Linear model }, Adam Optimizer with learning rate

∈ {0.01, 0.001}, full batch, patience ∈ {200 (GMDN-J), 500}.

Note that we kept the maximum number of epochs intentionally high as we use early

stopping to halt training. Also, the results of the experiments hold regardless of the

DGN variant used, given the fact that DGNs output a single value rather than a complex

distribution. In other words, we are comparing families of models rather than specific

architectures.
4After evaluating GAE, we observed that 1 layer was sufficient to achieve the best results.
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5.6 Results

We discuss our findings starting from the main empirical study on epidemic simulations,

which includes CDE results and transferability of the learned knowledge. Then, we

report results obtained on the real-world chemical tasks, highlighting the importance of

capturing a model’s uncertainty about the output predictions. Finally, we show the first

insights into using distributional distances to tackle link prediction tasks.

5.6.1 Epidemic Simulation Results

We begin by analyzing the results obtained on BA-100 and ER-100 in Table 5.1. We

notice that GMDN has better test log-likelihoods than the other baselines, with larger

performance gains on ER-100. Being GMDN the only model that considers both struc-

ture and multimodality, such an improvement was to be expected. However, it is par-

ticularly interesting that HIST has a better log-likelihood than MDN on both tasks. By

combining this fact with the results of DGN, we come to two conclusions. First, the

structural information seems to be the primary factor of performance improvement; this

should not come as a surprise since the way an epidemic develops depends on how the

network is organized (despite we are not aiming for biological plausibility). Secondly,

none of the baselines can get close enough to GMDN on ER-100, indicating that this

task is harder to solve by looking individually at structure or multimodality. In this

sense, BA-100 might be considered an easier task than ER-100, and this is plausible

because emergence of multimodality on the former task seems slightly less pronounced

in the SIR simulations. For completeness, we also tested an intermediate baseline where

DGN is trained with L1 loss followed by MDN on the graph embeddings. Results dis-

played a logL ≈ −16 on both datasets, probably because the DGN creates similar graph

embeddings for different distributions with the same mean, with consequent severe loss

of information.

BA-100 ER-100 Structure Multimodal

RAND -4.60 -4.60 7 7

HIST -1.16 -2.32 7 3

MDN -1.17(.05) -2.54(.07) 7 3

DGN -0.90(.35) -1.96(.16) 3 7

GMDN -0.67(.02) -1.56(.04) 3 3

Table 5.1: Results on BA-100 e ER-100 (12.000 test samples each). A higher log-
likelihood corresponds to better performances. GMDN improves the performance on
both tasks, showing the advantages of that taking into account both multimodality and
structure. Neural models’ results are averaged over 10 runs, and standard deviation is

reported in brackets.
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Similarly to what has been done in [18] and [261], we analyze how the mixing weights

and the distribution parameters vary on a particular GMDN instance. We use C=5

and track the behavior of each sub-network for 100 different ER-100 graphs. Figure 5.5

shows the trend of the mixing weights (left) and of the binomial parameters p (right)

for different values of the ratio R0 = β/γ. We immediately see that many of the sub-

networks are “shut down” as the ratio grows. In particular, sub-networks 3 and 4 are the

ones that control GMDN’s output distribution the most, though for high values of R0

only one sub-network suffices. These observations are concordant with the behavior of

Figure 5.4: when the infectivity rate is much higher than the recovery rate, the target

distribution becomes unimodal. The analysis of the binomial parameter for sub-network

4 provides another interesting insight. We notice that, depending on the input graph,

the sub-network leads to two possible outcomes: the outbreak of the disease or a partial

infection of the network. Note that this is a behavior that GMDN can model whereas

the classical MDN cannot.
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Figure 5.5: The trend of the mixing weights (left) and binomial coefficient (right)
for each one of five sub-networks is shown on 100 ER-100 graphs. We vary the ratio
between infection and recovery rate to inspect the behavior of the GMDN. Here, we
see that sub-network 4 can greatly change the binomial output distribution in a way

that depends on the input graph.

To provide further evidence about the benefits of the proposed model, Figure 5.6 shows

the output distributions of MDN, DGN and GMDN for a given sample of the ER-100

dataset. We also plot the result of SIR simulations on that sample as a blue histogram

(ground truth). Some observations can be made. First, the MDN places the output

probability mass at both sides of the plot. This choice is understandable considering the

lack of knowledge about the underlying structure (see also Table 5.1) and the fact that

likely output values tend to be polarized at the extremes (see e.g., Figure 5.4). Secondly,

the DGN can process the structure but cannot model more than one outcome. Therefore,

and coherently with [18] for vectorial data, the DGN unique mode lies in between those of

GMDN that account for the majority of GMDN probability mass. In contrast, GMDN

produces a multimodal and structure-aware distribution that closely follows the ground

truth.
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Figure 5.6: Output distributions of MDN, DGN, and GMDN on an ER graph of size
100. As we can see, the GMDN can provide a rich multimodal distribution conditioned

on the structure close to that generated by SIR simulations (blue histogram).

5.6.2 Transfer Results

To tell whether GMDN can transfer knowledge to a random graph of different size and/or

family (i.e., with different structural properties), we evaluate the trained models on the

six additional datasets described in Section 5.5. Results are shown in Figure 5.7, where

the RAND score acts as the reference baseline. The general trend is that the GMDN

trained on ER-100 has better performances than its counterpart trained on BA-100; this

is true for all ER datasets, BA-200 and BA-500. This observation suggests that training

on ER-100, which we assumed to be a “harder” task than BA-100 as discussed above,

allows the model to better learn the dynamics of SIR and transfer them to completely

different graphs. Since the structural properties of the random graphs vary across the

datasets, obtaining a transfer effect is therefore far from being a trivial task.

5.6.3 Chemical Benchmarks

We move to the results on the real-world chemical benchmarks, which are summarized

in Table 5.2. We observe a log-likelihood trend similar to that in Table 5.1, with the

notable difference that DGN performs much worse than MDN on alchemy_full. Follow-

ing the discussion in Section 5.5, we evaluate how models deal with the uncertainty in

the prediction by analyzing one of the output components of alchemy_full. Figure 5.8

shows such an example for the first component (dipole moment). The two modes of the

GMDN suggest that, for some input graphs, it may not be clear which output value is

more appropriate. This is confirmed by the vertical lines representing output values of
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Figure 5.7: Transfer learning effect of the trained GMDNs are shown as blue dots
and orange squares. Higher scores are better. GMDN trained on ER-100 exhibits
better transfer on larger BA-datasets, which might be explained by the difficulty of the

source task.

isomorphic graphs (as discussed in Section 5.5). Similarly to Figure 5.6, the DGN tries

to cover all possible outcomes with a single Gaussian in between the GMDN modes.

Although this choice may well minimize the MAE score over the dataset, the DGN fails

to model the data we have.

alchemy_full ZINC_full
logL MAE logL MAE

RAND -27.12 - -4.20 -
HIST -21.91 - -1.28 -
MDN -1.36(.90) 0.62(.01) -1.14(.01) 0.67(.00)
DGN -7.19(1.3) 0.62(.01) -0.90(.10) 0.49(.03)

GMDN -0.57(1.4) 0.61(.02) -0.75(.10) 0.49(.04)

Table 5.2: Results on the chemical tasks show how GMDN consistently reaches better
log-likelihood values than the baselines. We also report the MAE as secondary metric
for future reference, using the weighted mean of the sub-networks as the prediction (see
[18] for alternatives). Clearly, the MAE does not reflect the amount of uncertainty in
a model’s prediction, whereas the log-likelihood is the natural metric for that matter.

Results are averaged over 10 training runs with standard deviation in brackets.

5.6.4 Distributional Distances for Link Prediction

We conclude the chapter with an investigation into the ability of GMDN to implicitly

transfer structural information into the vertex representations by computing the distance

between vertex distributions. We report our structure-reconstruction results in Table 5.3.
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Figure 5.8: We illustrate the output distributions on the first component, i.e., dipole
moment, of an alchemy_full graph. As noted in the text, DGN places high confidence
in between the two modes of GMDN. On the contrary, GMDN is able to express
uncertainty about the possible output values (vertical lines) associated with isomorphic
graphs, which can be found if 3D attributes are not considered. The existence of the
two modes suggests that 3D attributes are nonetheless ignored by the three models.
See the discussion of Section 5.5 for a more in-depth explanation of the phenomenon.

When looking at the results, it is important to remark that the objective is not to perform

better than GAE but rather to assess whether distribution distances can retain a good

amount of structural information.

Cora Pubmed
AUC AP AUC AP

GAE 91.9(0.6) 92.0(0.6) 96.9(0.2) 97.0(0.2)
GMDN-B 86.8(1.4) 87.0(1.4) 89.8(1.2) 86.2(1.7)
GMDN-L2 81.6(3.5) 82.9(3.4) 91.8(1.4) 90.2(1.3)
GMDN-J 87.8(1.2) 89.0(1.6) 94.9(0.4) 94.5(0.4)

Table 5.3: Results for the structure reconstruction tasks.

In general, all the distance functions perform properly, though the weighted Jeffrey

distance is the one with the best results (even close to the ones of GAE). This distance is

also more efficient than the L2, which elegantly takes into account Gaussian mixtures but

has a quadratic cost in the number of sub-networks. Also, GMDN-L2 was the slowest

converging model, possibly due to the complex dependencies between pairs of mixtures.

From these preliminary results, it seems clear that distributional distances can be used

to approximately reconstruct most of the adjacency information without necessarily im-

posing explicit constraints on internal vertex representations. Therefore, future work will
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further investigate the potential of this technique as a regularization strategy when solv-

ing common graph regression/classification tasks, as well as finding new distributional

distances that provide even better link prediction accuracies.

5.7 Summary

With the Graph Mixture Density Networks, we have introduced a new family of mod-

els that combine the benefits of Deep Graph Networks and Mixture Density Networks.

GMDN can solve challenging tasks where the input is a graph and the conditional out-

put distribution is multimodal. In this respect, we have introduced a novel benchmark

application for graph conditional density estimation founded on stochastic epidemiolog-

ical simulations. The effectiveness of GMDM has also been demonstrated on real-world

chemical regression tasks and as a promising tool to address link prediction.

In the future, we plan to further study the impact of GMDN on more biologically

plausible synthetic datasets and find new application domains. We believe there are

plenty of directions in which we can extend GMDN, for instance by using a recurrent

encoder in order to model dynamically varying graphs [282, 283]. Moreover, we foresee

that graph-based reinforcement learning [284, 285] may benefit from the added degree of

uncertainty over continuous outputs that GMDN provides.

Overall, we hope that this general framework will play an important role in the approx-

imation of structure-dependent phenomena that exhibit non-trivial conditional output

distributions.



Chapter 6

Conclusions

E quindi uscimmo a riveder le stelle.

Inferno - Canto XXXIV

Over the last fifteen years, we have witnessed a race to digitalization throughout all public

and private sectors. As a by-product of this ongoing modernization, the amount of data

produced and stored has swiftly increased, so much so that it is now considered a new

asset for businesses. Despite the ethical implications of this being debated by experts

as well as by the general public, we could argue that the availability of data samples

has fostered the research and application of machine learning techniques that provide

the community with valuable services. Real-time translation, breast cancer detection,

and hate-speech recognition are just a few instances of what can be seen as a direct or

indirect attempt to make the world a safer and more inclusive place.

Oftentimes, however, these services make use of relatively simple realizations of struc-

tured data in the form of vectors or sequences, with the consequent inability to process

more complex relationships that may exist; this is the case of molecular predictions and

generation, discovery of unknown protein-protein interactions, and detection of mali-

cious activities in a social network or software, where the data is naturally encoded as a

graph. Indeed, the classical algorithmic extraction of actionable information from such

structures is rarely an easy task, due to the fact that any topological variability of the

input graphs must be accounted for. This dissertation discussed what is Deep Learn-

ing for Graphs and how it can help in the automatic discovery of a mapping between

a graph-structured input and a flat output. In Section 3.2, we tried to give a broad

but systematic perspective of the basic principles that characterize this field [1]. The

top-down approach we followed was meant to be accessible even to the noninitiated, and

it allowed us to see our and others’ contributions through the same lens. Moreover, our

156
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review paid attention to the foundational approaches that shaped the field both to give

a historical perspective and to prevent a wave of re-discovery of ideas.

Throughout the entire manuscript, we were also conscious of the fact that experimental

reproducibility on some graph benchmarks had been slightly overlooked, possibly be-

cause of the tremendous stream of works produced in the last years. For this reason,

before commencing any methodological chapter, we did our best to ensure that a fair,

robust, and reproducible comparison on graph classification benchmarks was available

to compare our models against state of the art DGNs (Section 3.3 [5]). In the process,

we discovered the importance of setting up proper structure-agnostic baselines, and we

showed how an incorrect evaluation setup can result in over-optimistic estimates of the

models’ generalization performances.

To show that Deep Learning for Graphs is actually useful in practice, we integrated a

real-world example from the field of molecular biosciences [10] in Section 3.4. Specifi-

cally, we showed that Deep Graph Networks are able to fairly well approximate a very

complex process that takes a given protein and returns an information-theoretic quantity

of interest. The real advantage of doing so is that said approximation can be done in a

minuscule fraction of the time required by the original method, thus allowing a quasi-

exhaustive study of the protein under consideration. That said, it is still unclear how

to transfer the learned knowledge to a different family of proteins, which could radically

change the way we approach the problem.

Moving to our main contribution, the design of Deep Bayesian Graph Networks has

been guided by the principles of local and iterative processing of information as well as

by the classical building blocks of Bayesian learning. The goal was to show that it is

possible to implement an effective, deep, and fully probabilistic learning approach for

one of the most unconstrained data structures. Inspired by pioneering methods, we have

proposed a probabilistic framework for learning on graphs, founded on an incremental

construction that facilitates information propagation through deeper architectures with

respect to most neural counterparts. The Contextual Graph Markov Model of Section 4.1

can be seen as the simplest realization of such a framework, in which the neighborhood

aggregation is defined in probabilistic terms and can deal with discrete edge labels [6, 7].

Surprisingly enough, the unsupervised nature of the model did not come at the price of

significantly worse performances in the supervised tasks considered; rather, the model

reached a very competitive accuracy on a number of classification benchmarks.

Later on, in Section 4.2, we continued to find ways to make our framework more gen-

eral. One of the issues was that the presence of non-discrete edge features could not be

modeled by CGMM. The solution lied in acting at the architectural level rather than
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on the definition of the neighborhood aggregation mechanism [8]; the addition of a sec-

ond Bayesian network, responsible for the generation of edge features, made possible to

adaptively discretize (in an unsupervised fashion) edge information, so that we could

apply again the original CGMM model. An unexpected outcome of this extension was

that classification performances improved even on those benchmarks where edge features

were missing. We attributed this phenomenon to the dynamic neighbor aggregation that

arises from the discretization of edges at each layer of the constructive architecture.

There are still many interesting open problems that regard the generality of the frame-

work. For instance, the neighborhood aggregation scheme is based on the mean operator,

but the sum is a theoretically more expressive operator over multi-sets (under appropri-

ate conditions). Hence, the investigation of a fully-probabilistic formulation for the sum

aggregation would certainly enhance the representational capabilities of the framework,

which could then capture richer patterns in the graph structure. Nonetheless, in the in-

terest of a broad exploration of the research space, we instead focused on the automatic

selection of some hyper-parameters of the framework, in particular the number of latent

states of the vertices’ categorical variables. Section 4.3 bridges ideas from Deep Learning

for Graphs and Bayesian Nonparametric methods to create the first DBGN whose com-

plexity grows with the data. What we named Infinite Contextual Graph Markov Model

is a deep architecture where each layer is a possibly infinite conditional mixture model,

implemented as a Gibbs sampling-based Hierarchical Dirichlet Process. Empirically, the

model performed similarly to CGMM, but it chose a number of latent states much smaller

than the best configuration of a model selection procedure, thus saving disk space where

to store the embeddings. The drawbacks of the approach are the slowness of the sampler

and the inability to consider edge features, both of which will be subject of future works,

for instance via variational derivations of the HDP.

To apply the DBGNs developed in this thesis to a real-world application, we considered

the problem of robust malware classification in Section 4.4 [11]. In particular, by consid-

ering graph representations of programs that are unaware of the intra-procedural code

changes, we managed to successfully classify a substantial number of malware families

by just looking at the topology of the input graph. This, in turn, allowed the proposed

procedure to be robust to a particular subset of code obfuscation techniques, and the

learned unsupervised embeddings were rich enough to distinguish the peculiar structural

variations in the data distribution.

The common thread of the entire thesis has been the cross-fertilization of ideas belonging

to different research fields. In keeping with this spirit, the last methodological contri-

bution of Chapter 5 has been a hybrid framework that combines a generic encoding

transduction, realized by a DGN, and the probabilistic capabilities of Bayesian networks
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[9]. This was necessary to model multimodal output distributions conditioned on topo-

logically varying input graphs. The resulting Graph Mixture Density Network takes the

best of both neural and probabilistic worlds to solve regression problems like the predic-

tion of an epidemic’s outcome on synthetic graphs, which is inherently stochastic. This

model can also be used to add a degree of trustworthiness to the predictive process, since

it can express the uncertainty about the possible outcomes using a mixture of simple

distributions. Being very general, GMDN is also amenable to further extensions, for

example by incorporating a recurrent DGN encoder for graphs’ time-series prediction.

Moreover, the experiments showed that a DGN itself cannot capture any multimodal-

ity in the output distribution, due to the implicit assumptions that are usually made

about the regression problem. In contrast, GMDN was able to correctly predict different

outcomes alongside their likelihood.

6.1 Future Directions

There are a number of potential directions to be investigated in the future, which are

mostly methodological and related to the Bayesian nature of the proposed models. One of

these concerns the incorporation of supervision into the embeddings’ generation process,

which could make the presence of a final neural predictor unnecessary in the overall

architecture. Another possibility would be to tackle unsupervised learning of temporal

graphs, by making the DBGNs accept sequences of observable variables rather than

static information. Moreover, the use of Bayesian networks and multimodal distributions

may ease the inspection of the inner workings of our models, allowing us to detect

whether or not a topological change in the input graph produces lower likelihoods or

significantly different multimodal output distributions. Therefore, further studies on the

interpretability properties of DBGNs and GMDN are needed to understand the extent

to which these models can provide humans with actionable feedback. Finally, in terms

of applications, we foresee the use of our models in contexts of scarce supervision and

large amounts of raw graphs, as it may happen in chemistry, biology, or social networks’

analysis, where pre-trained embeddings can play a decisive role in making the most of

the available data.

These final thoughts conclude the dissertation. All in all, we hope that the few contribu-

tions made in this thesis will inspire further studies and applications of both generative

and predictive approaches for the adaptive processing of structured data.
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List of Publications with Code

• Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual Graph Markov

Model: A deep and generative approach to graph processing. In Proceedings of

the 35th International Conference on Machine Learning (ICML), volume 80, pages

294–303, 2018

URL: https://github.com/diningphil/CGMM

• Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair com-

parison of graph neural networks for graph classification. In 8th International

Conference on Learning Representations (ICLR), 2020

URL: https://github.com/diningphil/gnn-comparison

• Davide Bacciu, Federico Errica, and Alessio Micheli. Probabilistic learning on

graphs via contextual architectures. Journal of Machine Learning Research, 21

(134):1–39, 2020

URL: https://github.com/diningphil/CGMM
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and edge-aware graph learning. In Proceedings of the 28th European Symposium
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(ESANN), 2020
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and Raffaello Potestio. A deep graph network–enhanced sampling approach to ef-

ficiently explore the space of reduced representations of proteins. Frontiers in
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cation. In Graph Learning Benchmark Workshop, The Web Conference (WWW),

2021

URL: https://github.com/diningphil/continual_learning_for_graphs

• Federico Errica, Davide Bacciu, and Alessio Micheli. Graph mixture density net-

works. In Proceedings of the 38th International Conference on Machine Learning

(ICML), pages 3025–3035, 2021

URL: https://github.com/diningphil/graph-mixture-density-networks

• Federico Errica Daniele Atzeni, Davide Bacciu and Alessio Micheli. Modeling edge

features with deep bayesian graph networks. In Proceedings of the International

Joint Conference on Neural Networks (IJCNN), pages 1–8, 2021

URL: https://github.com/diningphil/E-CGMM

• Federico Errica, Fabrizio Silvestri, Bora Edizel, Ludovic Denoyer, Fabio Petroni,

Vassilis Plachouras, and Sebastian Riedel. Concept matching for low-resource clas-

sification. In Proceedings of the International Joint Conference on Neural Networks

(IJCNN), pages 1–8, 2021

URL: https://github.com/facebookresearch/parcus

• Federico Errica, Giacomo Iadarola, Fabio Martinelli, Francesco Mercaldo, and Alessio

Micheli. Robust malware classification via deep graph networks on call graph

topologies. In Proceedings of the 29th European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning (ESANN), 2021

URL: https://github.com/diningphil/robust-call-graph-malware-detection
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List of Talks and Posters

• Oral presentation of our ICML 2018 paper [6].

• Oral presentation of our ICLR 2020 paper [5].

• Poster presentation of our ESANN 2020 paper [286].

• Spotlight presentation of our WWW 2021 workshop paper [5].

• Oral presentation of our ICML 2021 paper [9].

• Oral presentations of our IJCNN 2021 papers [8, 288].

• Poster presentation of our ESANN 2021 paper [11].

• Invited talk at IBM Research Zurich, 2021

• Invited talk at ContinualAI, 2021

• Invited talk at NEC Labs Europe, 2021
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