Reparametrization trick Notes

Federico Errica
federico.errica@phd.unipi.it

March 6, 2020

Please contact me if you find errors or have doubts. There is always room for improvement and learning.

Problem Definition

Assume we have a distribution $q_{\phi}(\mathbf{z} \mid \mathbf{x})$, where ϕ are free parameters, with its own $p d f h_{\phi}(x)$. It follows that its $C D F H_{\phi}(x)=P(X \leq x)$ is absolutely continuous. Therefore we can write

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} H_{\phi}(x)=h_{\phi}(x) \tag{1}
\end{equation*}
$$

Given $\varepsilon \sim P(\varepsilon)$ and $\mathbf{z}=g_{\phi}(\varepsilon, \mathbf{x})$, we want to find "situations" in which these 2 expectations coincide

$$
\begin{equation*}
\int q_{\phi}(\mathbf{z} \mid \mathbf{x}) f(\mathbf{z}) \mathrm{d} \mathbf{z}=\int P(\varepsilon) f(\mathbf{z}) \mathrm{d} \varepsilon \tag{2}
\end{equation*}
$$

by carefully choosing the family of distributions q, P and the function g. By performing the change of variable from left to right $\mathbf{z}=g_{\phi}(\varepsilon, \mathbf{x})$ (note that \mathbf{x} is fixed) we have

$$
\begin{equation*}
\int q_{\phi}(\mathbf{z} \mid \mathbf{x}) f(\mathbf{z}) \mathrm{d} \mathbf{z}=\int q_{\phi}\left(g_{\phi}(\varepsilon, \mathbf{x}) \mid \mathbf{x}\right) f\left(g_{\phi}(\varepsilon, \mathbf{x})\right) g_{\phi}^{\prime}(\varepsilon, \mathbf{x}) \mathrm{d} \varepsilon \tag{3}
\end{equation*}
$$

At this point it suffices to show that

$$
\begin{equation*}
q_{\phi}\left(g_{\phi}(\varepsilon, \mathbf{x}) \mid \mathbf{x}\right) g_{\phi}^{\prime}(\varepsilon, \mathbf{x})=P(\varepsilon) \tag{4}
\end{equation*}
$$

Case 1: (Tractable) Inverse CDF

Assume the inverse $C D F H_{\phi, x}^{-1}(u)$ of $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ exists and is tractable. If we choose

$$
\begin{equation*}
g_{\phi}(\varepsilon, \mathbf{x})=H_{\phi, x}^{-1}(\epsilon) \tag{5}
\end{equation*}
$$

we can show that eq. (4) holds. Thanks to eq. (1) we can write

$$
\begin{equation*}
q_{\phi}\left(g_{\phi}(\varepsilon, \mathbf{x}) \mid \mathbf{x}\right)=\frac{\mathrm{d}}{\mathrm{~d} g_{\phi}(\varepsilon, \mathbf{x})} H\left(g_{\phi}(\varepsilon, \mathbf{x})\right)=\frac{\mathrm{d} \varepsilon}{\mathrm{~d} g_{\phi}(\varepsilon, \mathbf{x})} \tag{6}
\end{equation*}
$$

Where we have used the fact that g_{ϕ} is the inverse of H. Therefore

$$
\begin{equation*}
\frac{\mathrm{d} \varepsilon}{\mathrm{~d} g_{\phi}(\varepsilon, \mathbf{x})} \frac{\mathrm{d} g_{\phi}(\varepsilon, \mathbf{x})}{\mathrm{d} \varepsilon}=\mathbf{1}=P(\epsilon) . \tag{7}
\end{equation*}
$$

We choose $\epsilon \sim \operatorname{Unif}[\mathbf{0}, \mathbf{I}]$, so that $P(\epsilon)=\mathbf{1}$.

Case 2: Family of location-scale distributions

I want to start from $P(\varepsilon)$ this time. Assume

$$
\begin{equation*}
\varepsilon \sim \text { LocScale }(\text { location }=\mathbf{0}, \text { scale }=\mathbf{I}) \tag{8}
\end{equation*}
$$

For example $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Assume that q belongs to the location-scale family with location $=\mu$ and scale $=\sigma$. We can construct a $g(\varepsilon, \mathbf{x})$ such that eq. (4) holds (by transforming the left-hand side of the equation in the right-hand side). In other words

$$
\begin{equation*}
\operatorname{LocScale}_{\mu, \sigma}\left(g_{\mu, \sigma}(\varepsilon, \mathbf{x}) \mid \mathbf{x}\right) g_{\mu, \sigma}^{\prime}(\varepsilon, \mathbf{x})=\operatorname{LogScale}_{\mathbf{0 , I}}(\varepsilon) \tag{9}
\end{equation*}
$$

We know that, when X is a random variable with zero mean and unit variance, another random variable Y can be espressed as

$$
\begin{equation*}
Y \stackrel{d}{=} \mu_{Y}+\sigma_{Y} X \tag{10}
\end{equation*}
$$

Furthermore, their pdfs are related in this way

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left(\frac{\left(y-\mu_{Y}\right)}{\sigma_{Y} X}\right) \frac{1}{\sigma_{Y}} \tag{11}
\end{equation*}
$$

Therefore, if we define $\mathbf{z}=g_{\mu, \sigma}(\varepsilon, \mathbf{x})=\mu+\sigma \varepsilon$ we have (using eq. (11))

$$
\begin{array}{r}
\operatorname{LocScale}_{\mu, \sigma}(\mathbf{z} \mid \mathbf{x}) \sigma=\operatorname{LogScale}_{\mathbf{0}, \mathbf{I}}\left(\frac{(\mathbf{z}-\mu)}{\sigma}\right) \\
\operatorname{LocScale}_{\mu, \sigma}(\mathbf{z} \mid \mathbf{x})=\operatorname{LogScale}_{\mathbf{0}, \mathbf{I}}(\varepsilon) \frac{1}{\sigma} \tag{12}
\end{array}
$$

where we have used the fact that $g_{\mu, \sigma}^{\prime}(\varepsilon, \mathbf{x})=\sigma$.

1 Integral solution, Appendix B

We want to solve this integral, where $\mathbf{z}, \mu, \sigma \in \mathbb{R}^{J}$

$$
\begin{equation*}
\int \mathcal{N}\left(\mathbf{z} ; \mu, \sigma^{2} \mathbf{I}\right) \log \mathcal{N}(\mathbf{z} ; \mathbf{0}, \mathbf{I}) d \mathbf{z} \tag{13}
\end{equation*}
$$

By definition

$$
\begin{aligned}
& \int \mathcal{N}\left(\mathbf{z} ; \mu, \sigma^{2} \mathbf{I}\right)\left(-\frac{1}{2} \mathbf{z}^{T} \mathbf{z}-\log \sqrt{(2 \pi)^{J}}\right) d \mathbf{z} \\
= & -\frac{1}{2} \int \mathcal{N}\left(\mathbf{z} ; \mu, \sigma^{2} \mathbf{I}\right)\|\mathbf{z}\|^{2} d \mathbf{z}-\log \sqrt{(2 \pi)^{J}} \int \mathcal{N}\left(\mathbf{z} ; \mu, \sigma^{2} \mathbf{I}\right) d \mathbf{z}
\end{aligned}
$$

Since the right integral sums to 1 we end up with

$$
\begin{equation*}
-\frac{1}{2 \sqrt{(2 \pi)^{J} \operatorname{det}\left(\sigma^{2} \mathbf{I}\right)}} \int e^{-\frac{1}{2}(\mathbf{z}-\mu)^{T}\left(\sigma^{2} \mathbf{I}\right)^{-1}(\mathbf{z}-\mu)}\|\mathbf{z}\|^{2} d \mathbf{z}-\frac{J}{2} \log 2 \pi \tag{14}
\end{equation*}
$$

Now we work out the integral that has been left, and we will plug the result back in eq. (14). But before we do that, I think a recap of some known integrals is useful.

- The Gaussian integral $\int e^{-a(x+b)^{2}}=\sqrt{\frac{\pi}{a}}$
- $\int x e^{-x^{2}}=0$ (since $x e^{-x^{2}}$ is an odd function it suffices to show that the integral from 0 to ∞ is finite, in particular it is $\frac{1}{2}$)

Also, notice that the function inside the integral in eq. (14) is non-negative, therefore we can apply the Fubini-Tonelli's theorem and compute the integral one z_{i} at a time.

$$
\begin{aligned}
& \int e^{-\frac{1}{2}(\mathbf{z}-\mu)^{T}\left(\sigma^{2} \mathbf{I}\right)^{-1}(\mathbf{z}-\mu)}\|\mathbf{z}\|^{2} d \mathbf{z} \\
= & \iint . . \int e^{-\frac{1}{2}(\mathbf{z}-\mu)^{T}\left(\sigma^{2} \mathbf{I}\right)^{-1}(\mathbf{z}-\mu)}\|\mathbf{z}\|^{2} d z_{1} d z_{2} . . d z_{J} \\
= & \iint . . \int e^{-\frac{1}{2}(\mathbf{z}-\mu)^{T}\left(\sigma^{2} \mathbf{I}\right)^{-1}(\mathbf{z}-\mu)}\left(\sum_{k}^{J} z_{k}^{2}\right) d z_{1} d z_{2} . . d z_{J}
\end{aligned}
$$

we can rewrite the exponent as a product of exponents, one for each component z_{i}. Then we can carry out the constants in this way

$$
\begin{equation*}
=\int e^{-\frac{1}{2} \frac{\left(z_{J}-\mu_{J}\right)^{2}}{\sigma_{J}}} \int e^{-\frac{1}{2} \frac{\left(z_{J-1}-\mu_{J-1}\right)^{2}}{\sigma_{J-1}^{2}}} \cdot \cdot \int e^{-\frac{1}{2} \frac{\left(z_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}}\left(\sum_{k}^{J} z_{k}^{2}\right) d z_{1} d z_{2} . . d z_{J} \tag{15}
\end{equation*}
$$

Eq. (15) can be written as a sum of different multiple integrals that differ from the z_{i}^{2} component. One can write, for a specific index k of the summation over z's components

$$
\begin{align*}
& =\int e^{-\frac{1}{2} \frac{\left(z_{k}-\mu_{k}\right)^{2}}{\sigma_{k}}} z_{k}^{2} \int e^{-\frac{1}{2} \frac{\left(z_{J}-\mu_{J}\right)^{2}}{\sigma_{J}^{2}}} \cdot . \int e^{-\frac{1}{2} \frac{\left(z_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{1}}} d z_{1} . . d z_{J} d z_{k} \\
& =\sqrt{(2 \pi)^{J-1} \operatorname{det}\left(\left[\sigma_{1}^{2},, \sigma_{k-1}^{2}, \sigma_{k}^{2},, \sigma_{J}^{2}\right]^{T} \mathbf{I}\right)} \int e^{-\frac{1}{2} \frac{\left(z_{k}-\mu_{k}\right)^{2}}{\sigma_{k}^{2}}} z_{k}^{2} d z_{k} \tag{16}
\end{align*}
$$

where we have applied the Gaussian integral multiple times and multplied the results all together (in particular, the determinant is equal to $\prod_{i} \sigma_{i}^{2}$). We are left with (dropping indexes to ease the notation)

$$
\begin{equation*}
\int e^{-\frac{1}{2} \frac{(z-\mu)^{2}}{\sigma^{2}}} z^{2} d z \tag{17}
\end{equation*}
$$

We perform a change of variable, $z-\mu=y, \frac{d y}{d z}=1, z=y+\mu$ then

$$
\begin{align*}
& \int e^{-\frac{1}{2} \frac{(z-\mu)^{2}}{\sigma^{2}}} z^{2} d z=\int e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}}(y+\mu)^{2} d y \\
= & \int y^{2} e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}} d y+\mu^{2} \int e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}} d y+2 \mu \int y e^{-\frac{1}{2} y^{2}} \sigma^{2} \\
= & \int y^{2} e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}} d y+\mu^{2} \sqrt{2 \pi \sigma^{2}} d y \tag{18}
\end{align*}
$$

the last term has been cancelled because of one of the second property mentioned above. The very last integral is solved with integration by parts

$$
\begin{align*}
& \int y y e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}} d y \\
= & -\sigma^{2}\left\{y e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}}\right]_{-\infty}^{\infty}-\int-\sigma^{2} e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}} d y \\
= & \sigma^{2} \sqrt{2 \pi \sigma^{2}} \tag{19}
\end{align*}
$$

Plugging the result back in eq. (18) yields (with index k)

$$
\begin{equation*}
\left(\sigma_{k}^{2}+\mu_{k}^{2}\right) \sqrt{2 \pi \sigma^{2}} \tag{20}
\end{equation*}
$$

Eq. (16) becomes

$$
\begin{equation*}
\sqrt{\left(2 \pi^{J}\right) \operatorname{det}\left(\sigma^{2} \mathbf{I}\right)}\left(\sigma_{k}^{2}+\mu_{k}^{2}\right) \tag{21}
\end{equation*}
$$

Again, Eq.(15) was the sum over k of eq. (16). Therefore eq (15) can be written as

$$
\begin{equation*}
\sqrt{\left(2 \pi^{J}\right) \operatorname{det}\left(\sigma^{2} \mathbf{I}\right)} \sum_{k}^{J}\left(\sigma_{k}^{2}+\mu_{k}^{2}\right) \tag{22}
\end{equation*}
$$

Finally, plugging this back into eq. (14) yields the final result

$$
\begin{equation*}
\int \mathcal{N}\left(\mathbf{z} ; \mu, \sigma^{2} \mathbf{I}\right) \log \mathcal{N}(\mathbf{z} ; \mathbf{0}, \mathbf{I}) d \mathbf{z}=-\frac{J}{2} \log (2 \pi)-\frac{1}{2} \sum_{j=1}^{J}\left(\mu_{j}^{2}+\sigma_{j}^{2}\right) \tag{23}
\end{equation*}
$$

1.1 Another integral

Similarly (easier!) we can also show that

$$
\begin{equation*}
\int \mathcal{N}\left(\mathbf{z} ; \mu, \sigma^{2} \mathbf{I}\right) \log \mathcal{N}\left(\mathbf{z} ; \mu, \sigma^{2} \mathbf{I}\right) d \mathbf{z}=-\frac{J}{2} \log (2 \pi)-\frac{1}{2} \sum_{j=1}^{J}\left(1+\sigma_{j}^{2}\right) \tag{24}
\end{equation*}
$$

