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Please contact me if you find errors or have doubts. There is always room
for improvement and learning.

Problem Definition

Assume we have a distribution qφ(z|x), where φ are free parameters, with
its own pdf hφ(x). It follows that its CDF Hφ(x) = P (X ≤ x) is absolutely
continuous. Therefore we can write

d

dx
Hφ(x) = hφ(x) (1)

Given ε ∼ P (ε) and z = gφ(ε,x), we want to find “situations” in which these
2 expectations coincide∫

qφ(z|x)f(z)dz =

∫
P (ε)f(z)dε (2)

by carefully choosing the family of distributions q, P and the function g. By
performing the change of variable from left to right z = gφ(ε,x) (note that
x is fixed) we have∫

qφ(z|x)f(z)dz =

∫
qφ(gφ(ε,x)|x)f(gφ(ε,x))g′φ(ε,x)dε (3)

At this point it suffices to show that

qφ(gφ(ε,x)|x)g′φ(ε,x) = P (ε) (4)
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Case 1: (Tractable) Inverse CDF

Assume the inverse CDF H−1φ,x(u) of qφ(z|x) exists and is tractable. If we
choose

gφ(ε,x) = H−1φ,x(ε) (5)

we can show that eq. (4) holds. Thanks to eq. (1) we can write

qφ(gφ(ε,x)|x) =
d

dgφ(ε,x)
H(gφ(ε,x)) =

dε

dgφ(ε,x)
(6)

Where we have used the fact that gφ is the inverse of H. Therefore

dε

dgφ(ε,x)

dgφ(ε,x)

dε
= 1 = P (ε). (7)

We choose ε ∼ Unif [0, I], so that P (ε) = 1.

Case 2: Family of location-scale distributions

I want to start from P (ε) this time. Assume

ε ∼ LocScale(location = 0, scale = I) (8)

For example ε ∼ N (0, I). Assume that q belongs to the location-scale family
with location = µ and scale = σ. We can construct a g(ε,x) such that eq.
(4) holds (by transforming the left-hand side of the equation in the right-hand
side). In other words

LocScaleµ,σ(gµ,σ(ε,x)|x)g′µ,σ(ε,x) = LogScale0,I(ε) (9)

We know that, when X is a random variable with zero mean and unit variance,
another random variable Y can be espressed as

Y
d
= µY + σYX (10)

Furthermore, their pdfs are related in this way

fY (y) = fX(
(y − µY )

σYX
)

1

σY
(11)

Therefore, if we define z = gµ,σ(ε,x) = µ+ σε we have (using eq. (11))

LocScaleµ,σ(z|x)σ = LogScale0,I(
(z− µ)

σ
)

LocScaleµ,σ(z|x) = LogScale0,I(ε)
1

σ
(12)

where we have used the fact that g′µ,σ(ε,x) = σ.
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1 Integral solution, Appendix B

We want to solve this integral, where z, µ, σ ∈ RJ∫
N (z;µ, σ2I) logN (z; 0, I)dz (13)

By definition∫
N (z;µ, σ2I)

(
− 1

2
zTz− log

√
(2π)J

)
dz

=− 1

2

∫
N (z;µ, σ2I)||z||2dz− log

√
(2π)J

∫
N (z;µ, σ2I)dz

Since the right integral sums to 1 we end up with

− 1

2
√

(2π)Jdet(σ2I)

∫
e−

1
2
(z−µ)T (σ2I)−1(z−µ)||z||2dz− J

2
log 2π (14)

Now we work out the integral that has been left, and we will plug the result
back in eq. (14). But before we do that, I think a recap of some known
integrals is useful.

• The Gaussian integral
∫
e−a(x+b)

2
=
√

π
a

•
∫
xe−x

2
= 0 (since xe−x

2
is an odd function it suffices to show that the

integral from 0 to ∞ is finite, in particular it is 1
2
)

Also, notice that the function inside the integral in eq. (14) is non-negative,
therefore we can apply the Fubini-Tonelli’s theorem and compute the integral
one zi at a time.∫

e−
1
2
(z−µ)T (σ2I)−1(z−µ)||z||2dz

=

∫ ∫
..

∫
e−

1
2
(z−µ)T (σ2I)−1(z−µ)||z||2dz1dz2..dzJ

=

∫ ∫
..

∫
e−

1
2
(z−µ)T (σ2I)−1(z−µ)(

J∑
k

z2k)dz1dz2..dzJ

we can rewrite the exponent as a product of exponents, one for each compo-
nent zi. Then we can carry out the constants in this way

=

∫
e
− 1

2

(zJ−µJ )2

σ2
J

∫
e
− 1

2

(zJ−1−µJ−1)
2

σ2
J−1 ..

∫
e
− 1

2
(z1−µ1)

2

σ21 (
J∑
k

z2k)dz1dz2..dzJ (15)
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Eq. (15) can be written as a sum of different multiple integrals that dif-
fer from the z2i component. One can write, for a specific index k of the
summation over z’s components

=

∫
e
− 1

2

(zk−µk)
2

σ2
k z2k

∫
e
− 1

2

(zJ−µJ )2

σ2
J ..

∫
e
− 1

2
(z1−µ1)

2

σ21 dz1..dzJdzk

=
√

(2π)J−1det([σ2
1, , σ

2
k−1, σ

2
k, , σ

2
J ]T I)

∫
e
− 1

2

(zk−µk)
2

σ2
k z2kdzk (16)

where we have applied the Gaussian integral multiple times and multplied
the results all together (in particular, the determinant is equal to

∏
i σ

2
i ). We

are left with (dropping indexes to ease the notation)∫
e−

1
2

(z−µ)2

σ2 z2dz (17)

We perform a change of variable, z − µ = y, dy
dz

= 1, z = y + µ then∫
e−

1
2

(z−µ)2

σ2 z2dz =

∫
e−

1
2
y2

σ2 (y + µ)2dy

=

∫
y2e−

1
2
y2

σ2 dy + µ2

∫
e−

1
2
y2

σ2 dy +
��������
2µ

∫
ye−

1
2
y2

σ2 dy

=

∫
y2e−

1
2
y2

σ2 dy + µ2
√

2πσ2dy (18)

the last term has been cancelled because of one of the second property men-
tioned above. The very last integral is solved with integration by parts∫

yye−
1
2
y2

σ2 dy

=���������

−σ2[ye−
1
2
y2

σ2 ]∞−∞ −
∫
−σ2e−

1
2
y2

σ2 dy

=σ2
√

2πσ2 (19)

Plugging the result back in eq. (18) yields (with index k)

(σ2
k + µ2

k)
√

2πσ2 (20)

Eq. (16) becomes √
(2πJ)det(σ2I)(σ2

k + µ2
k) (21)
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Again, Eq.(15) was the sum over k of eq. (16). Therefore eq (15) can be
written as

√
(2πJ)det(σ2I)

J∑
k

(σ2
k + µ2

k) (22)

Finally, plugging this back into eq. (14) yields the final result∫
N (z;µ, σ2I) logN (z; 0, I)dz = −J

2
log(2π)− 1

2

J∑
j=1

(µ2
j + σ2

j ) (23)

1.1 Another integral

Similarly (easier!) we can also show that∫
N (z;µ, σ2I) logN (z;µ, σ2I)dz = −J

2
log(2π)− 1

2

J∑
j=1

(1 + σ2
j ) (24)
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